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KURZFASSUNG VII

Kurzfassung

Im Rahmen dieser Arbeit werden Lösungsmöglichkeiten für gleich- und ungleichverteilte

Lautsprecherplatzierungen auf Basis der Ambisonics-Theorie hergeleitet. Für ungle-

ichförmig verteilte Systeme mit wenigen Lautsprechern nehmen die Amplituden der

Ansteuersignale sehr hohe Werte an, was sich in großen Lautstärkeunterschieden in-

nerhalb der Wiedergabeebene widerspiegelt. Aufgrund dessen werden Methoden zur

frequenz- und winkelabhängigen Lautstärkeregulierung vorgestellt um ein einheitlicher-

es Schallbild im ganzen Wiedergaberaum zu erzeugen. Die vorgestellten Techniken

werden nachfolgend mittels des ITU-Lautsprecherlayouts analysiert. Im weiteren wird

eine graphische Benutzeroberfläche vorgestellt, welche die hier untersuchten Techniken

zum Design eines Amibsonic-Decoders nutzt. Die entwickelten Verfahren werden ab-

schließend mit Hilfe eines Hörtests analysiert.





ABSTRACT IX

Abstract

Solutions for uniform and nonuniform loudspeaker layouts are derived with the help of

the Ambisonics theory. For nonuniform systems with a small amount of loudspeakers,

the amplitudes of the driving functions attain enormous values, what results in dif-

ferences of the sound pressure level within the reproduction plane. Considering this,

methods for frequency- and angle-dependent level regulation are introduced to create a

unified sound image within the whole reproduction area. The introduced techniques are

hereinafter analyzed based on the ITU layout. Afterwards, a graphical user interface

is introduced which allows the design of an Ambisonics decoder using the developed

techniques. The methods are finally analyzed with the help of a listening test.
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Chapter 1

Introduction

For the reproduction of spatial audio scenes, a variety of rendering methods are known.

These methods either focus on a faithful replica of the initial sound field or exploit psy-

choacoustical features of the human hearing. On the basis of stereophony described

already 1955 in [Sno55], Ville Pulkki developed the rendering method vector based

amplitude panning (VBAP) [Pul97], which aims on creating interaural level and time

differences at the ear to simulate phantom sources. This method uses features of the hu-

man hearing to create a sound image on a line between two speakers or a plane within

three speakers. Another widely spread reproduction method is wave field synthesis

(WFS). This technique aims on an exact synthesis of a desired sound field. Generally

WFS needs a huge number of loudspeakers to work in a useful way. It is based on

the idea that the sound field in a source free region is fully defined by the pressure on

the surrounding surface. For the two-dimensional reproduction, the loudspeakers are

placed on a circle or rectangle, for the three-dimensional case on a sphere. Depending

on the number of loudspeakers artifacts arise for higher frequencies and the area in

which the sound field can be synthesized correctly shrinks. A description of the theory

is given in [SRA08]. In the scope of this thesis, the Ambisonics technique is used to

create the sound field. The classical Ambisonics was introduced already in 1973 by

the British mathematician Gerzon [Ger73] and extended by Daniel to Higher Order

Ambisonics (HOA) [J. 01]. HOA describes a sound field in the origin with the help of
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spherical harmonics for the three-dimensional case and with cylindrical harmonics for

the 2D-reproduction. Spherical harmonics are orthogonal like sine and cosine functions

but are defined on a sphere. The description can be understood as Fourier series expan-

sion in the three dimensional space. A Fourier series expansion of a function is defined

up to infinite order whereby it results in an approximation if it is limited up to a certain

order. This holds also for the HOA sound field which is approximated with the help

of spherical harmonics up to a certain order. The classical Ambisonics uses harmonics

up to order one. For higher orders and more loudspeakers, the area for the synthesized

sound field is extended and the frequency for correct reproduction is increased which

will be seen later. In the scope of this thesis, the mathematical tools for the sound

field description are provided for the three- and two-dimensional case. Furthermore,

solutions for the loudspeaker weighting functions are derived. This solution can be

achieved by using pressure matching [Pol07] or mode matching [Pol00]. A connection

between both is derived. For plane waves, or sound source positions at the radius of a

circular speaker array, the weightings that pan sound images around the circle are real

and are called panning functions. In the scope of this thesis, methods for deriving pan-

ning functions for reproduction setups with a small number of loudspeakers are shown

and analyzed by means of the 5.1 ITU layout [IR12]. The optimization of the panning

functions of the ITU layout have been discussed before in [Moo09] [Pol07] [Cra03]. As

the reproduction area gets smaller as the frequency rises, and at some frequency, the

region is smaller than the head, a frequency-dependent panning function could reduce

artifacts of the sound field for high frequencies. Since the artifacts are caused among

other things by the side lobes of the panning functions, it is desirable to reduce the

side lobes for high frequencies. Within this thesis an angular- and frequency-dependent

weighting method is applied to optimize the synthesized sound field.

The following Chap. 2 provides the theoretical background for two- and three-dimension-

al Ambisonics. Starting from the mathematical description of a plane and radial wave

in spherical and cylindrical coordinates, the solutions for the loudspeaker weightings

are derived to synthesize the desired wave by matching both sound fields. Limitations
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of the synthesized sound field are shown subsequently. Furthermore, direct solutions

for uniformly spaced loudspeaker layouts are derived and examples given. Afterwards,

methods are introduced to optimize the created sound field.

After defining the sound field and providing tools for optimization, Chap. 3 talks ini-

tially about a solution for the 5.1 ITU layout and reasons are given why this solution is

not optimal. On basis of the introduced loudspeaker layout, methods for the regulation

and optimization are developed and analyzed. The introduced techniques are based

on an angular penalty for the loudspeakers positioned on a circle. Different penalty

functions are introduced and applied on the layout. The resulting solutions are ana-

lyzed. A connection for one of these solutions to the classical stereophonic panning is

given. As the Ambisonic theory provides bounds for the maximal frequency for which

the sound field is synthesized correctly, a frequency-dependent solution is introduced.

In Chap. 4, a designing tool for a frequency-dependent Ambisonics decoder is shown.

The functions of this graphical user interface are explained step by step. As the tool

provides additionally opportunities for an audio demo, it covers all features to perform

a listening test.

The last Chap. 5 talks about the performed listening test and the conditions of the

reproduction setup.
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Chapter 2

Higher Order Ambisonics

In this chapter, HOA will be introduced for spherical and cylindrical coordinate sys-

tems. Solutions for the loudspeaker weightings are derived and bounds for the resulting

sound field are given. Furthermore, the influence of the number loudspeakers on the

maximum frequency and maximum radius is analyzed.

2.1 Matching in Spherical Coordinates

HOA can be described in spherical coordinates, therefore this section will describe the

mathematical foundation.

2.1.1 Spherical Sound Field Description

Spherical Coordinates Definition

The position in spherical coordinates with radius r, azimuthal angle φ and elevation

angle θ is defined as

r = r


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 . (2.1)
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Figure 2.1: Spherical coordinates definition scheme.

The wave vector with wave number k = ω
c
, with c denoting the speed of sound and ω

is the angular frequency, is defined as

k = k


cos(φs) sin(θs)

sin(φs) sin(θs)

cos(θs)

 (2.2)

for a wave coming from elevation angle θs and azimuth angle φs.

Sound Field Definition

A sound field around the origin can be generally described as in [Wil99] with

p(r, θ, φ, k) =
∞∑
n=0

n∑
m=−n

Amn jn(kr)Y m
n (θ, φ), (2.3)
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where jn(kr) is the spherical Bessel function of the first kind of n-th order, in which the

radius r and spatial frequency k dependency of the sound field is included. Y m
n (θ, φ)

is the spherical Harmonic. Both are described in more detail in the Sect. A.1. Amn is

the Ambisonic coefficient and will be explained in the following.

Ambisonic Coefficients

The Ambisonic coefficient Amn (k) can be expressed for a plane wave as [Pol05]

Amn = 4πinY m
n (θs, φs)

∗, (2.4)

where θs and φs is the elevation and azimuth angle of the incoming wave.

Considering a point source resp. spherical wave, the Ambisonic coefficient can be

expressed as [Pol05]

Amn = ikhn(krs)Y
m
n (θs, φs)

∗, (2.5)

where hn(krs) is the spherical Bessel function of the third kind of n-th order. The

position of the point source is defined by the radius rs and the angles θs and φs in

spherical coordinates.

2.1.2 Plane Wave Matching in Spherical Coordinates

Pressure and Mode Matching

A common simplification for the reproduction of sound fields is that one considers plane

waves for loudspeakers and the sound sources one wants to recreate. To reproduce

the sound field by the given loudspeakers, one tries to match the pressure of a plane

wave at p = 1...P positions rp with the pressure of the plane waves produced by the

loudspeakers. The pressure matching leads, depending on the number of points P ,

to an accurate result for the loudspeaker weightings wl. It will be shown that the

pressure matching approach can be transformed into mode matching which represents
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the minimum matching conditions. First of all the pressure matching approach can be

described as [Pol05] [Pol07]

eik
T
s rp =

L∑
l=1

wl(θs, φs)e
ikTl rp , (2.6)

where ks ∈ R3 is the wave vector specifying the spatial frequency components of the

plane wave and l = 1...L is the index for on of L loudspeakers. Making use of the

spherical plane wave expansion which results from the plane wave coefficient Eq. 2.4

and the general sound field description

eik
T
s rp = 4π

∞∑
n=0

i
njn(kr)

n∑
m=−n

Y m
n (θp, φp)Y

m
n (θs, φs)

∗, (2.7)

the pressure matching approach gives

4π
∞∑
n=0

i
njn(kr)

n∑
m=−n

Y m
n (θp, φp)Y

m
n (θs, φs)

∗ =

=
L∑
l=1

wl(θs, φs)4π
∞∑
n=0

i
njn(kr)

n∑
m=−n

Y m
n (θp, φp)Y

m
n (θl, φl)

∗.

(2.8)

Since the spherical Bessel functions jn(kr) are orthogonal to each other [CK12], it is

just necessary to compare the respective indices n what reduces the complexity of the

latter equation [WA01]

i
njn(kr)

n∑
m=−n

Y m
n (θp, φp)Y

m
n (θs, φs)

∗ =

= i
njn(kr)

n∑
m=−n

Y m
n (θp, φp)

L∑
l=1

wl(θs, φs)Y
m
n (θl, φl)

∗.

(2.9)

Another orthogonality is given for the spherical Harmonics Y m
n (θp, φp) [CK12] and so

one can compare only the terms for the particular index m
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Y m
n (θp, φp)Y

m
n (θs, φs)

∗ = Y m
n (θp, φp)

L∑
l=1

wl(θs, φs)Y
m
n (θl, φl)

∗. (2.10)

One can see that setting the plane wave expansion into the pressure matching approach

results in the spherical mode matching equation

Y m
n (θs, φs)

∗ =
L∑
l=1

wl(θs, φs)Y
m
n (θl, φl)

∗. (2.11)

Simplification to Planar Reproduction

By using the definition of the spherical harmonics from Sect. A.1 and the complex

conjugated property Y m
n (θ, φ)∗ = Y −mn (θ, φ), one obtains

Λm
n P

|m|
n (cos(θs))e

−imφs =
L∑
l=1

wl(θs, φs)Λ
m
n P

|m|
n (cos(θl))e

−imφl , (2.12)

whereby Λ−mn = Λm
n =

√(
2n+1

4π
(n−|m|)!
(n+|m|)!

)
and P

|m|
n (cos(θ)) is the |m|th associated Leg-

endre function of order n. Assuming that the reproduction setup is located within a

plane, the elevation angles of the loudspeakers and the source are set to θl = θs = π
2

and

so cos(θl) = cos(θs) = 0. Eq. 2.12 reduces to the azimuthal mode matching equation

e−imφs =
L∑
l=1

wl(φs)e
−imφl . (2.13)

2.1.3 The Right Choice of the Modes to Match and Bounds

for the Sound Field

As one can see from Eq. 2.8, one needs to match an infinite amount of modes created by

the loudspeakers respectively by the sound source. An infinite amount of modes would

mean an infinite amount of loudspeakers on a sphere or in the planar case on a circle

creating these modes. Trapped in a sphere of loudspeakers could cause claustrophobia

while going into a circle of loudspeakers needs also some physical effort not to mention
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the funding and feasibility. What are the limitations for the sound field if only modes up

to order N are used, i.e., the number of terms in the originally infinite sum is bounded?

Ward and Abhayapala gave a rule of thumb [WA01] for the determination of N which

is a trade off between the area within radius rmax and the maximum frequency resp.

wave number kmax, one wants to produce. For a given frequency, the normalized error

is around 4% within radius rmax and the maximum order defined as [WA01]

Nmax = dkmaxrmaxe . (2.14)

The maximum frequency fmax, which is possible to reproduce, is then given by

fmax =
cN

2πr
, (2.15)

also known as spatial Nyquist frequency. The definition for the wave number k = 2πf/c

is used here. The maximum radius rmax can be calculated with

rmax =
cN

2πf
. (2.16)

Further bounds for N are given in [KSAJ07]. It is then possible to reproduce the modes

within a sphere with [WA01]

Lmax = (Nmax + 1)2. (2.17)

Fig. 2.2 suggests the modes, which are used to match the sound field. The amount of

modes, which are situated within the triangle, is (Nmax+1)2. For the reproduction in a

plane, only a few modes contribute noticeably to the sound field amplitude, that is only

the modes with n = |m|. The modes marked with a ◦ are zero for θ = π/2, whereas the

modes marked with a � are dropped so that the remaining terms marked with a � are

used for the match. This simplification is called the sectorial approximation [PBA12],

mentioned already in [AS08b] [AS08a], and reduces the effort for the mode matching

to −M ≤ m ≤M with n = |m| where the rule of thumb M = dkmaxrmaxe is the same

as for a sphere, i.e., maximum frequency and radius are also given by Eq. 2.15 and
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Eq. 2.16. The required number of loudspeakers is given by [WA01]

L ≥ 2M + 1. (2.18)

n

mM

Figure 2.2: Modes to match given by the sectorial approximation marked with �.
Modes which are zero for θ = π/2 marked with ◦. Left out modes marked with �
(adapted from [PBA12]).

In Sect. A.1, a brief analysis of the spherical harmonics up to order N = 3 is given.

The sectorial approximation assumes that it is more useful for reducing the error to

match modes of higher order marked with a � than the ones marked with a �.

Another limit for the number of loudspeakers, which will be used in this thesis, is shown

in [SS06]. For an average error of less than −40dB, it should be higher than [SS06]

L ≥ 2M + 3. (2.19)
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In this section so far, bounds for synthesized sound field have been given. To get an

impression how the number of loudspeakers influences the sound field, Fig. 2.3 shows

a sound field with 29 loudspeakers in the horizontal plane synthesizing a plane wave

with a frequency of fpw = 1000 coming from 0◦. The maximum radius for the given

frequency can be calculated as rmax ≈ 0.76m as indicated in the plot. It is computed

by using Eq. 2.16 and setting the maximum order to M = L− 1/2 = 14.

Figure 2.3: Snapshot of sound field synthesized with HOA using a circular distribution
(r = 1.5m) of 29 spherical point sources. The virtual source constitutes a plane wave
with an incidence angle of 0◦ and frequency fpw = 1000Hz.

If one increases the number of loudspeakers, the correctly synthesized area increases

as shown in Fig. 2.4. The maximum radius rmax ≈ 1.47m reaches in this case almost

the radius of the circular loudspeaker array with 55 spherical point sources.

The influence of the frequency on the sound field is depicted in Fig. 2.5. The radius

for the correctly reproduced sound field shrinks around the origin.

As the limits for the mode matching order are defined, the next section deals with the

matrix formulation of Eq. 2.13.
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Figure 2.4: Snapshot of sound field synthesized with HOA using a circular distribution
(r = 1.5m) of 55 spherical point sources. The virtual source constitutes a plane wave
with an incidence angle of 0◦ and frequency fpw = 1000Hz.

Figure 2.5: Snapshot of sound field synthesized with HOA using a circular distribution
(r = 1.5m) of 55 spherical point sources. The virtual source constitutes a plane wave
with an incidence angle of 0◦ and frequency fpw = 2000Hz.
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2.1.4 Matrix Formulation of the Azimuthal Mode Matching

Equation

Through the determination of m, the azimuthal mode matching Eq. 2.13 can be written

in matrix form as


e−i(−M)φs

...

e−iMφs

 =


e−i(−M)φ1 · · · e−i(−M)φL

...
. . .

...

e−iMφ1 · · · e−iMφL




w1

...

wL

 (2.20)

or in compact form

p = Hw. (2.21)

p is a vector of size (2M + 1) representing the modes, which has to be matched. H is

a matrix of size (2M + 1)× L including the matching conditions for a plane wave. w

is a vector of size L, which represents the loudspeaker panning factors.

2.1.5 Matching for Point Source Loudspeaker

Up to this point, the goal was to create a plane wave with the help of several plane

waves coming from certain directions. Normally, it is not a good approximation to

equal the sound coming from a loudspeaker with a plane wave. Furthermore, it is often

desired to synthesize the sound field created by a point source. The following equation

generalizes the approach for matching a sound field at the origin with the help of point

sources [BK10]

∞∑
n=0

n∑
m=−n

Amn jn(kr)Y m
n (θ, φ) =

L∑
l=1

wl(φs)G3D(‖r− rl‖). (2.22)

Inserting the spherical expansion for the 3D Green’s function G3D, i.e., the general

expression for a sound field Eq. 2.3 with the Ambisonic coefficient for a point source
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Eq. 2.5, one gets

∞∑
n=0

n∑
m=−n

Amn jn(kr)Y m
n (θ, φ) =

L∑
l=1

wl(φs)
∞∑
n=0

n∑
m=−n

ikhn(krl)Y
m
n (θl, φl)

∗jn(kr)Y m
n (θ, φ).

(2.23)

It is then again just necessary to compare the terms with same index n because of

orthogonality and the latter equation results in

jn(kr)
n∑

m=−n

Amn Y
m
n (θ, φ) =

ikjn(kr)
n∑

m=−n

Y m
n (θ, φ)

L∑
l=1

wl(φs)hn(krl)Y
m
n (θl, φl)

∗.

(2.24)

The same processing is done with the spherical harmonics and its orthogonality prop-

erty to reduce the sum to a singular term comparison

Amn Y
m
n (θ, φ) = ikY m

n (θ, φ)
L∑
l=1

wl(φs)hn(krl)Y
m
n (θl, φl)

∗. (2.25)

Considering that all point sources are on a sphere with radius rl, one can formulate a

general spherical matching expression

Amn = ikhn(krl)
L∑
l=1

wl(φs)Y
m
n (θl, φl)

∗. (2.26)

Matching a Point Source

Plugging in the Ambisonic coefficient for a point source Eq. 2.5 into the general spher-

ical matching expression Eq. 2.26 leads to

ikhn(krs)Y
m
n (θs, φs)

∗ = ikhn(krl)
L∑
l=1

wl(φs)Y
m
n (θl, φl)

∗. (2.27)
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and so to

Y m
n (θs, φs)

∗ =
hn(krl)

hn(krs)

L∑
l=1

wl(φs)Y
m
n (θl, φl)

∗. (2.28)

Making use of the spherical harmonic definition, the latter gives

Λm
n P

|m|
n (cos(θs))e

−imφs =
hn(krl)

hn(krs)

L∑
l=1

wl(φs)Λ
m
n P

|m|
n (cos(θl))e

−imφl . (2.29)

As this thesis concentrates on the reproduction of sound in a plane, one can simplify the

given equation by θl = θs = π
2
, so cos(θl) = cos(θs) = 0 and cancel P

|m|
n (0) resp. Λm

n on

both sides out. Furthermore, the simplifications regarding the sectorial approximation

as shown in Fig. 2.2 are valid. The latter considerations lead to

e−imφs =
h|m|(krl)

h|m|(krs)

L∑
l=1

wl(φs)e
−imφl . (2.30)

In matrix form, the propagation matrix H can be separated in

H = AB, (2.31)

with the weighting matrix

Aps
sp =



hM (kRl)
hM (kRs)

0 · · · 0

0
. . . . . .

... h0(kRl)
h0(kRs)

...
. . . . . . 0

0 · · · 0 hM (kRl)
hM (kRs)


(2.32)

and the phase term matrix

B =


e−i(−M)φ1 · · · e−i(−M)φL

...
. . .

...

e−iMφ1 · · · e−iMφL

 . (2.33)
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Matching a Plane Wave

Using the plane wave Ambisonic coefficient Eq. 2.4 at the general spherical matching

expression Eq. 2.26 results in

Y m
n (θs, φs)

∗ =
i
1−nk

4π
hn(krl)

L∑
l=1

wl(φs)Y
m
n (θl, φl)

∗. (2.34)

By using the definition of the spherical harmonic, Eq. 2.34 can be expressed as

Λm
n P

|m|
n (cos(θs))e

−imφs =
i
1−nk

4π
hn(krl)

L∑
l=1

wl(φs)Λ
m
n P

|m|
n (cos(θl))e

−imφl . (2.35)

Using the same simplification as for the point source matching, one can formulate

e−imφs =
i
1−|m|k

4π
h|m|(krl)

L∑
l=1

wl(φs)e
−imφl . (2.36)

While B is the same as before, A is defined as

Apw
sp =

ik

4π



i
−MhM(kRl) 0 · · · 0

0
. . . . . .

... h0(kRl)
...

. . . . . . 0

0 · · · 0 i
−MhM(kRl)


. (2.37)

Matrix Formulation for Different Radii

In the general spherical matching Eq. 2.26 it is assumed that all loudspeakers lie on a

sphere and thus have the same radius. Such a setup is not always the case. Hence, it

is not possible to separate H in A and B. Accordingly, H is defined for a plane wave

as
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Hpw
sp =

ik

4π


i
−MhM(kr1)e−i(−M)φ1 · · · i

−MhM(krL)e−i(−M)φL

...
. . .

...

i
−MhM(kr1)e−iMφ1 · · · i

−MhM(krL)e−iMφL

 (2.38)

and for a point source as

Hps
sp =


hM (kr1)
hM (krs)

e−i(−M)φ1 · · · hM (krL)
hM (krs)

e−i(−M)φL

...
. . .

...

hM (kr1)
hM (krs)

e−iMφ1 · · · hM (krL)
hM (krs)

e−iMφL

 . (2.39)

2.1.6 Direct Solution for Loudspeaker Weightings

In the previous sections, approaches for matching sound pressure and modes were given.

The equations so far do not give a good impression how the loudspeaker weightings

have to look like. To derive a direct solution for the loudspeaker driving function,

one uses an infinite distribution of point sources on a sphere, which is then sampled

at equally spaced angular distances. This procedure is called simple source approach

[Pol05] and results in the following loudspeaker weighting

wl = gl

N∑
n=0

n∑
m=−n

Amn
ikhn(krl)

Y m
n (θl, φl), (2.40)

where gl is a weighting term, which comes from finite sampling points. Using the

Ambisonic coefficient for a point source Eq. 2.5 and assuming that the desired source

lies also on the loudspeaker sphere, one obtains

wl = gl

N∑
n=0

n∑
m=−n

Y m
n (θs, φs)

∗Y m
n (θl, φl). (2.41)

Using the addition theorem of the Legendre functions [CK12], the latter equation can

be expressed as
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wl = gl

N∑
n=0

2n+ 1

4π
Pn(rs · rl), (2.42)

where rs ∈ R3 is the vector from the origin to the position of the source and rl to the

loudspeaker position. The scalar product between the two vectors is rs · rl = cos γ,

where γ is the angle between the two vectors. To limit the equation to the spherical

angles θs and φs describing a variable source on a sphere, one can set θl = π/2 and

φs = 0. In this case, one considers the weighting function of a loudspeaker positioned

on the x-axis. Furthermore the summation limit can be defined as N =
√
L− 1.

wl = gl

√
L−1∑
n=0

2n+ 1

4π
Pn(cosφs sin θs). (2.43)

If L is not a square number, N has to be rounded down.

For a reproduction setup with L = 25 transducers equally distributed on the surface

of a sphere, Fig. 2.6 shows the amplitude weighting for a loudspeaker placed on the

x-axis at radius rl for different positions of the source, which has to be reproduced.

Inserting the number of loudspeakers in latter equation results in

4∑
n=0

2n+ 1

4π
Pn(xy) =

5

32π
(63x4y4 + 28x3y3 − 42x2y2 − 12xy + 3), (2.44)

whereby the relation

x = cos(φs), y = sin(θs) (2.45)

is used.

In this section, mathematical definitions of the sound field in spherical coordinates have

been given. Furthermore, the connection between pressure and mode matching has

been derived. On the basis of mode matching, the sound field of the loudspeakers and

the sound image has been matched for plane and radial waves, and formulated in matrix

equations. Bounds for the synthesized sound field have been given. Furthermore, a
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direct solution for the loudspeaker weightings has been derived. The following section

deals with the sound field definition in cylindrical coordinates and derives again the

connection between pressure and mode matching.
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Figure 2.6: Panning function on a sphere depending on azimuthal angle φs, elevation
angle θs of the source, for L = 25 loudspeaker.
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Figure 2.7: Cylindrical coordinates definition scheme.

2.2 Matching in Cylindrical Coordinates

HOA can be described in spherical coordinates, therefore this section will describe the

mathematical foundation.

2.2.1 Cylindrical Sound Field Description

Cylindrical Coordinates Definition

The position in cylindrical coordinates with radius R and azimuthal angle φ is defined

as

r = R

 cos(φ)

sin(φ)

 , (2.46)
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whereas z-invariance is assumed.

The wave vector k with wave number k = ω
c

is defined as

k = k


cos(φs)

sin(φs)

0

 , (2.47)

where it is assumed that the z component of k is 0.

Sound Field Definition

A z-invariant wave in cylindrical coordinates can be generally expressed as [WAM09]

p(R, φ, k) =
∞∑

m=−∞

AmJm(kR)eimφ, (2.48)

where Jm(kR) is the Bessel function of mth order, which is dependent on cylindrical

radius R and spatial frequency k.

Ambisonic Coefficients

Am stands for the cylindrical Ambisonic coefficient and is defined as [WAM09]

Am = i
me−imφs (2.49)

for a plane wave coming from the azimuthal incident angle φs.

Considering a line source or cylindrical wave, the coefficient is defined as [WAM09]

Am =
i

4
Hm(kRs)e

−imφs . (2.50)

Hm(kRs) is the Hankel function of the first kind of m-th order. The position of the

line source is given by its radius Rs and its angle φs.
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2.2.2 Plane Wave Matching in Cylindrical Coordinates

As before in the spherical case, it is approached to create a plane wave by the superpo-

sition of plane waves coming from the loudspeaker directions. For this approach, the

procedure of matching the pressure on the positions p with radius Rp and azimuthal

angle φp is the same [Pol00]

e−iksRp cos(φp−φs) =
L∑
l=1

wl(φs)e
−iklRp cos(φp−φl). (2.51)

The cylindrical Bessel expansion for a plane wave is defined as

pφs(R, φ) = e−iksR cos(φ−φs) =
∞∑

m=−∞

i
mJm(ksR)eim(φ−φs), (2.52)

which is the combination of the Ambisonic coefficient and the general cylindrical wave

expression. The previous equation can then be written as

∞∑
m=−∞

i
mJm(ksRp)e

im(φp−φs) =
L∑
l=1

wl(φs)
∞∑

m=−∞

i
mJm(klRp)e

im(φp−φl). (2.53)

The orthogonality property is also valid for the Bessel function Jm(ksRp) and so the

per mth term comparison results in

i
mJm(ksRp)e

im(φp−φs) = i
mJm(klRp)

L∑
l=1

wl(φs)e
im(φp−φl). (2.54)

By reducing both sides, latter term results in the azimuthal mode matching Eq. 2.13

e−imφs =
L∑
l=1

wl(φs)e
−imφl , (2.55)

in which just the phase terms have to be matched.



24

2.2.3 Matching for Line Source Loudspeaker

For the reproduction in a plane, one usually approximates the radiation pattern of the

loudspeaker with a line source that is the two dimensional Green’s function G2D

p(R, φ, k) =
L∑
l=1

wl(φs)G2D(‖r− rl‖) =
L∑
l=1

wl(φs)
i

4
H0(k ‖r− rl‖). (2.56)

Trying to reproduce any wave in cylindrical coordinates, one can use the cylindrical

Bessel expansion for a line source

∞∑
m=−∞

AmJm(kR)eimφ =
i

4

L∑
l=1

wl

∞∑
m=−∞

Hm(kRl)Jm(kR)eim(φ−φl). (2.57)

After using the orthogonality property of the Bessel function and reducing, one receives

the general cylindrical matching expression

Am =
i

4
Hm(kRl)

L∑
l=1

wle
−imφl . (2.58)

Matching a Line Source

Using the Ambisonic coefficient for a line source with radius Rs and azimuthal angle

φs, one can formulate

i

4
Hm(kRs)e

−imφs =
i

4
Hm(kRl)

L∑
l=1

wle
−imφl , (2.59)

which reduces to

e−imφs =
Hm(kRl)

Hm(kRs)

L∑
l=1

wle
−imφl . (2.60)
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Writing the latter equation in matrix form Eq. 2.21, the weighting matrix A is then

Als
cy =



H−M (kRl)

H−M (kRs)
0 · · · 0

0
. . . . . .

... H0(kRl)
H0(kRs)

...
. . . . . . 0

0 · · · 0 HM (kRl)
HM (kRs)


. (2.61)

Matching a Plane Wave

Creating a plane wave with the help of line sources is straight forward

i
me−imφs =

i

4
Hm(kRl)

L∑
l=1

wle
−imφl (2.62)

or written as

e−imφs =
i
1−m

4
Hm(kRl)

L∑
l=1

wle
−imφl . (2.63)

This results in the slightly different A :

Apw
cy =



i
1+M

4
H−M(kRl) 0 · · · 0

0
. . . . . .

... i

4
H0(kRl)

...
. . . . . . 0

0 · · · 0 i
1−M

4
HM(kRl)


. (2.64)

Matrix Formulation for Different Radii

As already mentioned in the spherical case, it cannot always be assumed that all

loudspeakers possess the same radius. For this case, matrix H is again not separable.

For a plane wave, it results then in
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Hpw
cy =


i
1+M

4
H−M(kR1)e−i(−M)φ1 · · · i

1+M

4
H−M(kRL)e−i(−M)φL

...
. . .

...

i
1−M

4
HM(kR1)e−iMφ1 · · · i

1−M

4
HM(kRL)e−iMφL

 (2.65)

and for a line source in

Hls
cy =


H−M (kR1)

H−M (kRs)
e−i(−M)φ1 · · · H−M (kRL)

H−M (kRs)
e−i(−M)φL

...
. . .

...

HM (kR1)
HM (kRs)

e−iMφ1 · · · HM (kRL)
HM (kRs)

e−iMφL

 . (2.66)

2.2.4 Direct Solution for Loudspeaker Weightings

As the simple source approach Eq. 2.40 results in a direct, more or less simple inter-

pretable solution, it would be useful to have a solution for loudspeakers placed on a

circle and so just dependent on one angular parameter. The origin of this panning

function lies in this case in an infinite line source distribution on a circle, which is then

sampled at equally distant points. The weighting of one single loudspeaker can then

be written as in [WAM09]

wl(φs) =
1

L

M∑
m=−M

Am
iπHm(klRl)

eimφl , (2.67)

where L is the number of loudspeakers. Using the definition of the Ambisonic coefficient

for a line source, assuming that the desired sound source lies on the same circle as the

loudspeakers, i.e., Rs = Rl, having naturally the same frequency ks = kl, one receives

for a loudspeaker at angle φl = 0

wl(φs) =
1

L

M∑
m=−M

eimφs =
1

L
e−iMφs

2M∑
m=0

eimφs . (2.68)

Using the relation for a finite geometric series, one receives
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wl(φs) =
1

L
e−iMφs

1− ei(2N+1)φs

1− eiφs . (2.69)

By using M = (L− 1)/2 [WA01], latter equation can be simplified to

wl(φs) =
1

L

sin(L
2
φs)

sin(1
2
φs)

, (2.70)

which is the angular cardinal sine function. This function can only be used for an odd

number of loudspeakers. For an even number of loudspeakers, the angular sampling

function is defined as [Pol96]

wl(φs) =
1

L

(
sin(L−1

2
φs)

sin(1
2
φs)

+ cos(
L

2
φs)

)
. (2.71)

To get an impression for the panning function, the weighting curve for a loudspeaker

at φl = 0 is shown in Fig. 2.8. The function possesses L − 1 zeros, where L is the

number of loudspeakers of the reproduction setup. If the desired sound source lies

directly on a loudspeaker, all other loudspeakers are weighted with zero. In this case,

the loudspeaker at position φl = 0 gets exactly weighting wl = 1 if the source lays

on the same position, that is all other loudspeakers should produce no acoustic signal.

For an even number of transducers, there is another zero necessary at the opposing

site of the desired source as one can see from the curve. One has to remember that an

even number of sampling points results in a loss of phase information, i.e., the gain for

an additional loudspeaker is always higher for a resulting odd number of transducer.

Proofs for the solution and analyses are given in [Pol00]. Further details for the angular

sinc function for an even number of loudspeakers are given in [LS03].
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Figure 2.8: Panning function depending on the source angle φs for loudspeaker placed
at φl = 0 with a reproduction setup of equally distributed loudspeakers placed on
circle.

2.3 Connection between Line and Point Sources

In the previous sections, several ways to the solution of loudspeaker weightings were

given. Parallel, solutions for line respectively point sources were developed. So far it

was assumed that the line sources were ideal. A brief analysis of line and point sources

respectively the cylindrical and spherical Green’s function is given in Sect. A.2. Line

sources provide a smaller attenuation if the distance to the source increases. But even

with the current technology it is some effort to produce a loudspeaker, made out of

infinitely small point sources with infinite height not to mention the required space.

Limited through space and technology, a loudspeaker is never an ideal line source.

These limitations result in a line source like radiation. A line source with narrower
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length and certain distance between the point source becomes always a spherical wave

which is the far field property. Furthermore, the radiation property is frequency de-

pendent, because the distance between the point sources is not infinitesimal small. Ac-

cordingly, it should be desired to have transducer arrays which have near field property

for the whole reproduction area. Otherwise, the weighting factors should be calculated

with the spherical solution to avoid additional errors. There are several producers for

line arrays resp. line source alike loudspeakers which are used for home entertain-

ment systems or PA systems. More information about line and point source and their

characteristics can be found for example in [KFCS99].

2.4 Solutions for the Loudspeaker Weightings

2.4.1 Unregulated Solution

Pseudo Inverse Matrix

The solution of the equation p = Hw depends on the size (2M + 1)× L of the mode

representing matrix H. If L = 2M + 1, i.e., if H is square, the system possesses a

unique solution. The solution is then simply given by the inverse

w = H−1p. (2.72)

Provided that H is nonsingular, this should be the desired case, i.e., one tries to repro-

duce the maximum mode order with the given number of loudspeakers. If the matrix

H is not square, it is not possible to invert the matrix. One can use the pseudo inverse

as a solution. For a system with L > 2M + 1, that is more columns than rows, the

pseudo inverse H+ is given by [PT55][Hjø11]

w = H+p = HH(HHH)−1p. (2.73)

For a system with less columns than rows L < 2M + 1, one minimizes the error to find
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the desired solution. In this case the pseudo inverse is derived from the least squares

approach [PT55][Hjø11]

w = H+p = (HHH)−1HHp. (2.74)

The solutions for these pseudo inverses will be derived in the next sections.

Minimum Energy Solution

If H has full row rank, which means there are not enough modes to specify the loud-

speaker weightings L > 2M + 1, the solution is derived with the focus on minimum

weightings energy respectively loudspeaker power. The additional mode matching con-

dition p−Hw = 0 completes then the Lagrange function, which is defined as

Λ(w,λ) = wHw + λT [p−Hw] . (2.75)

To receive the minimum, one equates the derivatives with respect to w

∂Λ

∂w
= wH − λTH (2.76)

and λ
∂Λ

∂λ
= [p−Hw]T (2.77)

to zero. Afterwards one resolves Eq. 2.76 to wH = λTH and inserts it into latter

equation

pH = λTHHH. (2.78)

Solving for λT and plugging into Eq. 2.76, one receives

wH = pH(HHH)−1H. (2.79)

Taking the Hermitian of latter equation, one obtains in the minimum energy solution

Eq. 2.73 of the Moore-Penrose pseudo inverse
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w = ((HHH)−1H)Hp = HH((HHH)−1)Hp. (2.80)

Least Squares Approach

As mentioned before, the pseudo inverse for a system, which has less columns than

rows, is the solution for the least squares approach

ε = ‖p−Hw‖2 , (2.81)

which has to be minimized. Writing the L2 norm in matrix multiplication terms

ε = [p−Hw]H [p−Hw] (2.82)

and multiplying the brackets, one gets

ε = pHp− pHHw −wHHHp + wHHHHw. (2.83)

Using the differentiation rules for complex vectors or matrices [Hjø11], one receives the

derivative and the minimum by equaling to zero

∂ε

∂wH
= −HHp + HHHw = 0, (2.84)

where the solution for w is then given by Eq. 2.74.

2.4.2 Tikhonov Regularization

If you want to regulate the total power of the loudspeaker weightings, you can use

the regularization with euclidean norm also known as Tikhonov regularization [BV10]

which was already used in [Pol05] [WA01] [BK10]

ε = ‖p−Hw‖2 + γ ‖w‖2 . (2.85)
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Limiting the power increases the robustness of the reproduction system regarding vari-

ations of the loudspeaker positioning but does not provide much room for the control

of a specific loudspeaker setup. A more analytical way to create panning functions is

described in [Pol07]. Poletti uses a penalty function γl = 0.5(1−cos(φl−φs)) to reduce

the power of the loudspeakers whose sound-waves come from the opposite direction,

compared to source angle. Putting the elements γl on the diagonal of the matrix Γ,

which is sometimes called Tikhonov matrix, one can write Eq. 2.85 as

ε = ‖p−Hw‖2 + γr ‖Γw‖2 (2.86)

with γr as an additional scalar regularization factor to control the influence of ‖Γw‖2

on the weighting solution. In matrix product terms one receives

ε = pHp− pHHw −wHHHp + wHHHHw + γrw
HΓHΓw. (2.87)

Using again the differentiation rules for complex matrices [Hjø11] and setting to zero,

one receives

∂ε(w)

∂wH
= −HHp + HHHw + γrΓ

HΓw = 0. (2.88)

This equation can then be solved with respect to w and one receives the solution

w =
[
HHH + γrΓ

HΓ
]−1

HHp. (2.89)

If the matrix H is seperable in two matrices, one can write the latter formula as

w =
[
(AB)HAB + γrΓ

HΓ
]−1

(AB)Hp. (2.90)

2.4.3 Limit the Panning Function Order

The utilized microphone type determines the maximum mode order which can be

depicted after recording. In practice, only finite order microphones are feasible, i.e.,
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it is necessary to limit the bandwidth of the panning function. As the solution of the

last section has no constraint on the bandwidth, it is desirable to limit the order, i.e.,

the bandwidth of the panning function. One can use a Fourier row expansion to depict

the function with the help of sin and cos terms up to order M . The solution for the

loudspeaker weightings for the source angles φs with s = 1...S is then given by [Pol07]

W = QT (2.91)

or more precisely as


w1(φ1) · · · w1(φS)

...
. . .

...

wL(φ1) · · · wL(φS)

 = Q



1 · · · 1

cos(φ1) · · · cos(φS)

sin(φ1) · · · sin(φS)
...

. . .
...

cos(Mφ1) · · · cos(MφS)

sin(Mφ1) · · · sin(MφS)


, (2.92)

where Q is the L×2M+1 Fourier row coefficient matrix and T includes the sin and cos

up to order M . To determine these coefficients, one can use the least squares solution

[Pol07]

Q = WTH(TTH)−1. (2.93)
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Chapter 3

Weighting Function Design

The Ambisonics theory provides defined rules for loudspeaker signal calculation as one

can see from the Chap. 2. In the following section, the ITU loudspeaker constellation

is analyzed and reasons are given why the theory does not give an optimal solution.

3.1 Weightings of the ITU Layout

The ITU (International Telecommunication Union) layout is a recommended loud-

speaker arrangement for 5.1 sound systems. 5.1 systems typically consist of three front

loudspeakers, left, right and center (L/C/R), and two surround speaker, left surround

(LS) and right surround (RS) [IR12]. Furthermore, there is one low frequency effect

channel without a defined position. As this layout is quite popular for the widely

spread 5.1 system, it provides a good basis for comparable research regarding sound

quality. Fig. 3.1 depicts the loudspeaker arrangement like it is defined in [IR12]. All

five speakers possess the same radial distance to the origin. Three of them are in

viewing direction of the listener, i.e., φl = ±30◦ and φl = 0◦. Two loudspeakers are

positioned behind the listener at φl = ±110◦ to create the surround effect.

As shown in subsection 2.1.3, the number of loudspeakers limits the area and the

frequency range in which the sound is reproduced properly. For irregular layouts,

i.e., non-uniform distributed loudspeakers in a circular array, the correctly synthesized
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Figure 3.1: ITU reproduction layout as described in [IR12].

area is dependent on where the wave is coming from. The panning functions for

irregular layouts are interpolants for periodic non-uniform sampling [Pol07]. A solution

for non-uniformly sampled functions is derived in[ME04]. For the ITU layout, the

theoretical solution for the signal weightings for each speaker are shown in Fig. 3.2.

This figure depicts the amplitudes, the sum and the root mean square value at every

angle −180◦ ≤ φs ≤ 180◦. Even if the sum is constant over the whole angular range,

the amplitudes of the individual transducers reach partially enormous values. The

theoretical computations are based on a correctly reproduced sound field in the origin.

As long as the listener stays in the origin, he would perceive it correctly up to a certain

frequency. As soon as he turns his head or moves just a bit, the enormous volumes of

certain loudspeakers would distort the sound image extraordinarily. If one considers the

angular range behind the listener one can see that all loudspeakers are active whereby

three of them are driven with huge amplitudes. A movement of the listeners towards the

frontal loudspeakers could create a frontal sound image perception. Furthermore, large

loudspeaker weights mean that if there are slight differences between the loudspeaker
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responses or variations of loudspeaker positioning, this will cause huge variations in

the reproduced field. For that reason, the given solution for the ITU layout is non-

robust. A useful method to increase the robustness would be to penalize loudspeakers

in certain angular areas to limit the amplitude of these loudspeakers. The next section

treats how to design a penalty function analytically.
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Figure 3.2: Interpolants for the ITU loudspeaker layout.

3.2 Penalty Function Design

3.2.1 Design

The penalty function can be seen as angular windowing of the loudspeaker. The angle

of the source can be seen as the center of the window. Loudspeakers with small angular

distance to the source play a bigger role for the reproduction of the desired wave. Before
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designing a penalty function, the angular distance has to be defined as the difference

between speaker and source angle

∆φ = φl − φs, (3.1)

where for ∆φ = ±180◦ the desired and the loudspeaker wave would come from opposite

directions, and for ∆φ = 0◦ from the same direction. For the highest possible angular

distance ∆φ = ±180◦, it is desired to create a high penalty. For low angular distances

where ∆φ is close to zero, a penalty close to zero would be useful. A penalty which

was already published in [Pol07] is defined as

γ(∆φ) = 0.5(1− cos(∆φ)). (3.2)

The function is periodic, reaches one for loudspeakers from the opposite direction and is

zero for ∆φ = ±0◦. One disadvantage of the function is that it is not really controllable

between 0 and 180 degree. A more sophisticated method would have several parameters

to control the curve in this angle range. One attempt with similar properties regarding

periodicity provides the function

γ(∆φ) = 1− e−b(1−cos(∆φ))p . (3.3)

It has the same characteristics for input angles of 0 and 180 degrees. In addition, it

provides several parameters to control the envelope in between. So what would be

useful requirements for the curve shape? First of all, it is desirable to penalize the

loudspeakers whose angular distance is more than ∆φ = π/2 with a value close to one.

To ensure this, one can use the parameter b to adjust the behavior of the function so

that the condition γ(∆φ = π/2) = 1− ε is fulfilled, where ε should be a value close to

zero. Equaling

1− ε = 1− e−b(1−cos(π/2))p (3.4)

and resolving for b, one receives
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b = − ln ε. (3.5)

For ε = 0.01, which is close to zero, b has to be set to about 4.6. For the rest of this

thesis, it is set to b = 4 which results in ε = 0.0183. The value p in Eq. 3.3 controls

the steepness of the curve, i.e., how fast the value defined by ε is reached. In Fig. 3.3,

the penalty function curves for Eq. 3.2 and Eq. 3.3 are depicted, where p ∈ {1, 2, 4}
are illustrated.
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Figure 3.3: Plot of several penalty functions with low angular distance in the center
and high angular distance on the left/right side.

Another way to assign a penalty would be to give no penalty to the closest loudspeakers

in terms of angular distance. But in some cases, this condition does not fulfill an

intuitive selection for the penalty assignment. If one assumes three loudspeakers with

the same radius and with angle towards the origin 0◦, 10◦ and 30◦, and a desired sound

source coming from 14◦, the two nearest loudspeakers would be at 0◦ and 10◦. In this

case the intuitive loudspeaker selection would be 10◦ and 30◦ to synthesize the desired
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wave, i.e., to give the penalty to loudspeaker at 0◦. Intuitively, it would be more

useful to give no penalty to one loudspeaker in positive angular distance and to one

in negative angular distance, where the angular distance is defined as −π < ∆φ ≤ π.

The mathematical formulation of this rule is defined as

γ(∆φ) =


0 if ∆φ = min

φl
(φl − φs) for ∆φ ≥ 0

0 if ∆φ = min
φl
|φl − φs| for ∆φ ≤ 0

1 else .

(3.6)

The idea behind this penalty function is to attenuate all loudspeakers except the two

where the desired sound source is in between. This is the basic idea of VBAP used e.g.

in [Pul97].

3.2.2 Penalty Function Analysis

Cosine Penalty

In the last section, several possibilities for penalty functions have been given. These

functions provide a good basis for further analysis, which is given in this section with

reference to the ITU layout introduced in Sect. 3.1. Fig. 3.4 depicts the driving (pan-

ning) functions for all of the five loudspeakers. The left plot shows the unlimited

solution of Eq. 2.89. The right plot shows the driving functions limited up to order

M as defined by Eq. 2.93. It is obvious that the amplitudes stay below 1.3 and over

−0.3 and do not reach enormous values as the ITU interpolants do, which are shown

in Fig. 3.2. This is based on the fact that the total power is regulated. Furthermore

the side lobes are reduced because of the angular penalty. The sum of the amplitudes

stays around one for all angles and especially the root mean squared (rms) value, which

is an indicator for the used power, remains close to one in marked contrast to the rms

power in Fig. 3.2. The found driving functions create a much more robust sound field.

In [Pol07], further analysis regarding the synthesized sound field is given. For example,

the radial/frequential error increases is much lower with the penalty condition. In the
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scope of this thesis, the resulting sound field is evaluated with the help of a listening

test which is described in 5.
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Figure 3.4: Panning functions for the ITU layout regularized by γr = 1.5 with the
cosine penalty function. Unlimited solution on the left, limited to an order of 4 on the
right. −−− rms power, − · − · − sum of weights.

Exponential Penalty

Besides the cosine penalty, a function with exponential behavior was introduced in the

last section in Eq. 3.3. Fig. 3.5 illustrates the plots for the ITU layout driving functions

created with the regulated least squares solution using the exponential penalty function.

On the left side one can see again the unlimited solution and on the right side the order

limited one. Compared to the cosine penalty, the side lobes in the frontal speaker area

are better attenuated for the left and the right curve. The area behind the listener

develops a similar shape. Summarizing one can say, this setup would also be suitable

for a listening test but has not been considered.

As the exponential penalty function provides several parameters to control its influence

on the driving function, another parameter set is shown in Fig. 3.6. The arrangement

of the plots is the same as before. In this case, the high exponent causes noticeable

side lobes. Furthermore, the shape of the curve seems to be more abrupt caused by

the nonlinear influence of the exponential penalty for the unlimited solution. This

behavior disappears as one would expect for the order limited version. The amplitudes
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Figure 3.5: Panning functions for the ITU layout regularized by γr = 0.15 with the
exponential penalty function (b = 4, p = 1). Unlimited solution on the left, limited to
an order of 4 on the right. −−− rms power, − · − · − sum of weights.

have some obvious deviations from one that would create a non robust sound image.

For that reason, it would not be suitable for listening tests.
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Figure 3.6: Panning functions for the ITU layout regularized by γr = 0.5 with the
exponential penalty function (b = 4, p = 4). Unlimited solution on the left, limited to
an order of 4 on the right. −−− rms power, − · − · − sum of weights.

Pairwise Penalty

The last penalty constraint which has been introduced is the pairwise one defined in

Eq. 3.6. Fig. 3.7 depicts the panning functions for every of the five loudspeakers for

both solutions. In contrast to the plots before, the shape of the curves is clearly non-

smooth. For this case, the penalty constraint lowers the side lobes and attenuates
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the non preferred loudspeaker amplitudes. For higher values of the regularization

parameter γr at most two speakers are active for reproduction of a wave coming from

a desired direction. This kind of reproduction method is used for the listening test

described later. In this case, the order limited solution does definitely not provide

the desired result. In the next section, the connection of the pairwise penalty to the

traditional stereo panning laws are given.
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Figure 3.7: Panning functions for the ITU layout regularized by γr = 2 with the
pairwise penalty function. Unlimited solution on the left, limited to an order of 4 on
the right. −−− rms power, − · − · − sum of weights.

3.2.3 From Pairwise Penalty to the Stereo Panning Laws

As shown in Fig. 3.7, for high values of regularization factor γr, there are at most two

loudspeakers active during the replay. The question is which stereo panning law is used

to create the image of the virtual source, i.e., how the presented solution connected is

to the classical stereophony [Sno55]. By showing the influence of γr on the loudspeaker

solution Eq. 2.89, the weightings for the two active loudspeaker can be derived. First

of all, one defines separately the terms of

[
HHH + γrΓ

HΓ
]−1

, (3.7)

that is
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HHH =


1 + 2 cos(φ1 − φ1) 1 + 2 cos(φ2 − φ1) · · · 1 + 2 cos(φL − φ1)

1 + 2 cos(φ1 − φ2) 1 + 2 cos(φ2 − φ2) · · · 1 + 2 cos(φL − φ2)
...

. . . . . .
...

1 + 2 cos(φ1 − φL) 1 + 2 cos(φ2 − φL) · · · 1 + 2 cos(φL − φL)

 , (3.8)

and

ΓHΓ =



0 0 0 · · · 0

0 0 0 0

0 0 1
. . .

...
...

. . . . . . 0

0 0 · · · 0 1


. (3.9)

For large values of γr, the penalized mode Eq. 3.7 can be expressed in form of

 A U

V D

−1

, (3.10)

where D can be approximated with a diagonal matrix with large values on the diagonal.

Considering this blockwise writing, the solution for the latter equation is given as in

[Hag89]

 A−1 + A−1UC−1VA−1 −A−1UC−1

−C−1VA−1 C−1

 , (3.11)

with C = D + VA−1U. The inverse of C can be approximated with the inverse of

D because of its large values on the diagonal. The inverse is then a zero matrix 0.

Keeping this approximations in mind, one receives

[
HHH + γrΓ

HΓ
]−1

=

 A−1 0

0 0

 , (3.12)
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where A−1 is the inverse of HHH for the first two loudspeakers, whatever their angles

φ1/2 are. As one can see, the mode matching is in this case limited to the two loud-

speakers, where the source is in between. The matching equation in this case is defined

as


eiφs

1

e−iφs

 =


eiφl e−iφl

1 1

e−iφl eiφl


 w1

w2

 . (3.13)

By subtracting and adding the first and the third line, this matching equation can be

written as


1

cosφs

sinφs

 =


1 1

cosφl cosφl

sinφl − sinφl


 w1

w2

 . (3.14)

The latter system of equation can be rewritten as


I

II

III


1

cosφs

sinφs

=

w1 + w2

(w1 + w2) cosφs

(w1 − w2) sinφs

(3.15)

Equation III divided by II results in the tangent law for stereophony [RS09]

tanφs =
(w1 − w2)

(w1 + w2)
tanφl, (3.16)

which has been proposed earlier in [Ber73]. Another well known stereophonic law is

the law of sines which was derived in [Bau62] and can be achieved by dividing equation

III and I

sinφs =
(w1 − w2)

(w1 + w2)
sinφl. (3.17)
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Fig. 3.8 shows a comparative plot for the sine, tangent and mode matching panning

stereo law for the two loudspeakers at φl = ±30◦. As one can see, there are just minor

differences in the driving functions. The mode matching condition creates a panning

law which lies exactly between sine and tangent.
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Figure 3.8: Sine-, mode and tangent panning law in comparison for loudspeakers at
φl = ±30◦.

3.3 Frequency Dependent Design

The idea of creating a frequency dependent weighting to optimize the spatial sound

image was already mentioned by Gerzon in [Ger85], where he uses a shelf filter to match

the different requirements given by the spatial perception of humans for the frequen-

cies below and above 700Hz. As Gerzon says, the human head attenuates acoustical

waves for frequencies above 700Hz. Another frequency dependent approach was done

by Daniel in [Dan03], where near-field effects of the reproduction loudspeakers are com-

pensated using distant-coding filters. Within the scope of this thesis, the frequency-
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dependent design is based on the limitation given by the number of loudspeakers. The

next section shows how the reproduction setup influences the frequency-dependent

weighting function design.

3.3.1 Robust Panning for given Reproduction Setups

As mentioned previously, the limited number of loudspeakers results in restrictions for

sound field synthesis. These restrictions result in the order limitation for the mode

matching which leads to bounds for frequency and radius in which the sound field

is reproduced properly. For the ITU layout, the number of loudspeakers is L = 5,

the mode matching order is set to M = 1 using Eq. 2.19 or M = 2 using Eq. 2.18.

Assuming the minimum requirement is the correct reproduction of the sound field

around the human head, which has a radius of about Rh = 8.75cm [BD98] [Kuh77],

one receives for the upper frequency limit by using Eq. 2.15 fmax ≈ 1248Hz for an

order N = 2 or fmax ≈ 624Hz for an order N = 1. The maximum frequency represents

the theoretical bound in which the sound field is synthesized correctly within the head

radius around the origin for given error conditions of Eq. 2.18 or Eq. 2.19. A frequency

dependent weighting function design can be developed based on the cues provided by

the Ambisonics theory. Below that frequency, this theory holds and is applicable, above

only pairwise loudspeakers should be used for the reproduction which leads to stereo

panning laws. Having defined the cue points for the frequency ranges, one can define

the requirements for the filters.
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3.3.2 Interpolation between the required Weighting Factors
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Figure 3.9: Plot of two different interpolation methods for four defined points.

One wants to derive panning functions that provide the largest possible reproduction

area at low frequencies, but it is required to limit the effects of side-lobes at high fre-

quencies, where the reproduction radius is smaller than the human head. Therefore it

is desirable to change the panning functions with frequency. The frequency-dependent

cue points have been developed using the Ambisonics theory. These points define

weighting factors for the loudspeaker signals on the frequency axis. Analytically, one

can define two required levels, one given by the Ambisonics theory below the boundary

frequency and one level calculated by stereo panning laws for the upper frequencies.

This would result in something like low or high pass at a cutoff frequency with defined

pass, transition, and stop band. In the scope of this thesis, the main issue was the de-

sign of the frequency response at given points. The right choice of the filter would need
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some more research. To create a smooth transition between the determined points,

one can use simple interpolation functions, which are for example provided by Matlab.

Fig. 3.9 shows the behavior of two different interpolation methods provided by the

Matlab library. Beneath the two shown methods, the linear interpolation has been

shortlisted for the frequency response creation. The linear function has non-smooth

behavior on the change to the transition band which reduces the decay of the impulse

response. The spline interpolation causes unwanted overshooting in the pass and stop

band. An optimal behavior provides the ’pchip’ (piecewise cubic Hermite interpolat-

ing polynomial) [Mol13] spline which uses a piecewise cubic Hermite interpolation.

The amplitude stays constant in the pass band between the selected points and does

not cause distortions. Additionally, the transition to the second amplitude behaves

smoothly. A mathematical description can be found in [Mol13] and implementations

in [KMNF89].
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Figure 3.10: Exemplary plot of an impulse response with 64 samples.

After using an inverse fast Fourier transformation (IFFT), one receives the real impulse
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response (IR) of the linear phase filter, which is plotted in Fig. 3.10. It is desirable

to have a real impulse response as the panning functions are real. This was achieved

by complex conjugated mirroring of the frequency response at fs/2. It is obvious that

most of the values are zero. A more efficient way to represent this IR is shown in the

next section.

3.3.3 Reducing the Impulse Response Coefficients

After defining a decent frequency envelope for the weightings, it is desirable to reduce

the number of coefficients of the impulse response, which results in a smaller group

delay, less data and a smaller computational effort. The discrete impulse response

samples are connected to the z-domain via the z-transform, which is the counterpart

to the Laplace transform for discrete values and is defined as [OSB99]

G(z) =
∞∑

k=−∞

g[k]z−k. (3.18)

For a simple first-order linear phase filter with a symmetric impulse response

g[k] = a1δ[k] + a0δ[k − 1] + a1δ[k − 2], (3.19)

one receives the z-transform

G(z) = a1z
0 + a0z

−1 + a1z
−2. (3.20)

For

z = eiΩ, (3.21)

G(z) can be expressed as

G(eiΩ) = a1e
iΩ0 + a0e

−iΩ + a1e
−i2Ω, (3.22)
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where Ω = 2πf/fs is the normalized angular frequency with the sampling frequency

fs. G(eiΩ) is also called discrete time Fourier transform (DTFT) [OSB99]. The latter

equation can now be expressed with cosine terms as

G(eiΩ) = (a0 + 2a1 cos Ω)e−iΩ. (3.23)

The magnitude of the frequency response and the weightings can therefore be expressed

with cosine terms. This is again a Fourier series expansion, where it is sufficient to

calculate the coefficients for cosine terms, because the frequency response should be an

even function around Ω = 0. The weightings W at the frequencies Ωµ with µ = 1...K

which are created by cosine terms up to order M can be expressed as

W = QT, (3.24)

or more precise as


w1(Ω1) · · · w1(ΩK)

...
. . .

...

wL(Ω1) · · · wL(ΩK)

 = Q


1 · · · 1

cos(Ω1) · · · cos(ΩK)
...

. . .
...

cos(MΩ1) · · · cos(MΩK)

 . (3.25)

The least squares solution for K > M + 1 is then given by

Q = WTH(TTH)−1 =


a1

0 · · · 2a1
M

...
. . .

...

aL0 · · · 2aLM

 , (3.26)

where aLM is the Mth coefficient of the Lth loudspeaker.

This section has shown how to generate a simple linear phase filter from a predefined

frequency response defined at crucial points and then interpolated. In the next chap-

ter, a tool is introduced which allows to define these points and to perform an audio

demonstration afterwards.
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Chapter 4

Audio Control Interface

Within the scope of this thesis, an Ambisonics decoder has been developed for sound

field synthesis based on a free field audio scene. To control the behavior of the decoder,

a graphical user interface (GUI) has been created. The next section explains adjustable

features of the GUI.

4.1 Graphical User Interface

The filter coefficients have been defined with the aid of crucial points in the frequency

domain. At first, it would be interesting which parameters are necessary to determine

one of these points. Fig. 4.1 shows the interface in terms of an editable table which has

been created with the help of Matlab. In the first row one can see an editable text field

to name the point. The second row marked with ’Penalty Function’ offers a drop down

menu with predefined penalty functions which have been introduced in Sect. 3.2. For

users who want to create their own penalty function, the next row provides an editable

text field in which one can type in an individual penalty function in Matlab syntax

provided the check box left of it marked with ’Design Penalty’ is activated. The term

’Regularization’ refers to the factor γr controlling the influence of the penalty function

on the loudspeaker solution Eq. 2.89. It can be adjusted with the editable text field. In

the fifth row, one is able to limit the order of the trigonometric functions, the weighting
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functions are represented with. If the value ’Weighting Function Order’ is zero, there

is no limitation on the order. The matching order can be controlled with the text field

in the following row. Useful results can be achieved with the coherence of Eq. 2.18 or

Eq. 2.19 whereby the latter represents the lower limit. A very important parameter is

the frequency at which the interpolation is created. For a set of interpolation points,

there is only one point possible at a single frequency. The last row allows with the

help of a drop-down menu the insertion of external weightings like the ones of Peter

Craven which he has created on the basis of various psychoacoustic criteria [Cra03].

The following listing shall summarize the just described parameters:

• ’Name’: Name of the interpolation point.

• ’Penalty’: Drop-down menu with several penalty function suggestions.

• ’Design Penalty’: If the check-box is activated, one can create an own function

in the text-field using Matlab syntax.

• ’Regularization’: This value corresponds to the factor γr in Eq. 2.89 which defines

the influence of the penalty on the solution.

• ’Weighting Function Order’: Maximum order of the trigonometric functions

which represent the weightings.

• ’Mode Matching Order’: Maximum order of the modes which has to be matched

to find the solution as defined in Eq. 2.18 or Eq. 2.19.

• ’Frequency’: The frequency at which the interpolation point is created.

• ’External Weightings’: If a check-box is activated, an external weighting is used

for the interpolation point.

If the user changes the parameters in the GUI, the plot for the weighting functions is

updated simultaneously. If one clicks on the button ’Create Interpolation Point’, the
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Figure 4.1: Window for the creation of an interpolation point.

interpolation point is calculated for the given parameters at the adjusted frequency

and saved for one decoder.

Beneath the weighting function plots, Fig. 4.2 shows two decoders and their created

interpolation points. Every decoder possesses buttons for creating, editing and deleting

the point selected in the list, and for saving or loading a set of points. Clicking on a

point in the list of one of the decoders will plot the corresponding weighting functions

on the right side. For the upper decoder, four interpolation points have been created.

As shown in Sect. 3.3, two points define the lower frequency range and two points the

upper frequency range. For the upper frequency range, only pairwise panning provides

robust results that is at most two loudspeakers are active which can be seen in the upper

plot. In the central upper part of Fig. 4.2, one can see the loudspeaker positioning and a

slider to control the total volume of the rendition. The positioning of the reproduction

setup is controlled with a file in extensible markup language (XML) syntax. Another

feature regarding the playback of the audio demonstration is displayed in the lower

left of the window. Beneath a start button, a button pause and stop reproduction is

provided. The other elements in the lower left are:
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• ’Angle Range’: Defines the angular range in which the audio demo is performed.

• ’Angle Steps’: Defines the step size within the angular range for the reproduction

of the test signal.

• ’Signal Time’: Duration of the signal at the defined angles.

• ’Signal Type’: Drop-down menu with several test signal types.

• ’Pause after signal’: Pause after rendition of the test signal with Decoder 1/2.

• ’Edit Signal Filter’: Apply a filter on the defined signal.

The next section dwells on how the test signal is created and what kind of test should

be used for listening tests which aim on spatial perception.

Figure 4.2: Interface for the control of the decoder and the listening test.

4.2 Test Signal Creation

Besides usability regarding the decoder parameter and the audio demo, it would be

useful to have a variety of test signals. Different kind of signals have been used to
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analyze the localization. Typically, 1/3 octave band noise [Bla97] or pink noise [PH05]

lead to useful spatial perception and create enough cues for the human hearing. The

requirements for these frequency bands are defined in standard ANSI SI.II-1986 [TB86].

The GUI allows to select either a sine, pink or white noise and to read a whole WAVE

audio file with the help of a drop-down menu. After defining the signal, it is possible

to apply a filter via the ’Edit Signal Filter’ button. After clicking on the button, a

window like in Fig. 4.3 opens and one is able to choose between low, band (1/3 octave

or octave) or high pass with a given mid/cut-off frequency. To meet the requirements

of standard ANSI SI.II-1986 [TB86], a Butterworth filter of order four has been used.

In Fig. 4.2, one can see the Fourier transform of pink noise filtered with 1/3 octave

band Butterworth filter.

Figure 4.3: Interface for applying a filter on the created signal.

Having introduced a useful tool to perform a listening test, the next section talks about

how the test is prepared and conducted.
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Chapter 5

Listening Test

Typically, listening tests should be conducted under free field conditions that is in an

anechoic environment. In the scope of this thesis, it has not been possible to pro-

vide such conditions. Nevertheless, the first incoming wave dominates the perception,

i.e., sound incoming up to 50ms after the first wave does not have an influence on

the localization. This fact is also known as precedence effect [LCYG99] and was al-

ready mentioned in 1951 [Haa51]. Besides the spatial perception, the room size has

an influence on the power of the reflected sound. The following section deals with the

room geometry and its influence on the reflections. Furthermore, the positioning of the

reproduction setup is described.

5.1 Room Description and Experimental Setup

The listening test was not performed in an anechoic chamber, even if the theoretical

derivation of the driving functions assumes free-field conditions. In the following, a

short description of the room shape and the resulting assumptions for the reverberant

field are given. The reverberation time, which is the time an acoustical impulse requires

to loose 60dB sound pressure level, was measured T60 = 0.7s. The room has height

has a height of 3.3m, a width of 4.3m and a length of 6.1m, and so the volume is

approximately V ≈ 3.3·4.3·6.1m3 ≈ 86.6m3. Fig. 5.1 shows a picture of the room where
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the listening test was conducted. With a given room geometry and a reverberation

time, the acoustic absorption Aa measured in Sabin can be calculated as

[KFCS99] [p. 336]

Aa = 0.161
V

T60

[Sabin] . (5.1)

Figure 5.1: Picture of the room with reproduction setup and a dummy head on the
position of the listener.

This absorption factor is necessary to compute the reverberant intensity Ir of a sound

field [KFCS99] [Ber54]

Ir =
4Pa
Aac

, (5.2)

where Pa is the acoustic power output of a sound source. The direct intensity of a

sound source with directivity factor D is given as [KFCS99] [PFN10] [AS00]

Id =
Pa

4πcr2
D. (5.3)

To calculate the radius around a sound source, in which the direct intensity is higher

than the reverberant, one equals the two latter terms
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Pa
4πcr2

D =
4Pa
Aac

. (5.4)

Resolving for the radius

r2 =
Aa
16π

D (5.5)

and using the definition of the acoustic absorption, one receives

r ≈ 0.057

√
V

T60

D [m] . (5.6)

As expected, it is desirable that the position of the listener is within this radius for

every loudspeaker of the reproduction setup. In this case, the radial position is the

same for every loudspeaker as defined by the ITU layout. The directivity factor for a

piston source (loudspeaker sound production can be approximated with the movement

of a piston) is defined as [KFCS99]

D =
(ka)2

1− J1(2ka)/ka
, (5.7)

where a is the radius of the piston, k is the wave number and J1() is the Bessel function

[Ber54] of the first kind of first order. For a piston radius a = 0.09m and loudspeaker

radius of about 1 meter, the reverberant is equal to the direct field for a frequency of

around 600Hz. Considering this at the listener position, the direct field has the bigger

influence on the sound field perception of the listener for frequencies over 600Hz. The

shape of the room and the resulting sound reflections are somehow determined and

unchangeable. However, it is possible to avoid distortions of the synthesized sound field

with accurate positioning of the loudspeakers. The radius for all loudspeakers has been

chosen to one meter to keep some distance to the listener and to the walls. A problem

with angular positioning arises from a certain loudspeaker size. Furthermore, it is

easier to measure straight lines with the help of a tape measure than measuring angles,

especially for circles with a radius of one meter. For that reason the center loudspeaker

of the ITU layout has been positioned first with the given radius. Afterwards, all other
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loudspeakers have been positioned on the same radial distance with the help of the

chord, which transforms an angular distance to a direct distance and is defined as

dc = 2r sin
(α

2

)
, (5.8)

whereby α is the angular distance between the two loudspeakers. For the reproduction,

the high resolution studio monitor ’hr824’ from the the company MACKIE has been

used 1. The following section deals with the implementation and test items which have

been played at the listening test.

5.2 Implementation and Test Items

The methods for deriving solutions for the loudspeaker signals mentioned in the previ-

ous chapters provide a variety of weighting functions. Besides the introduced methods,

already published methods [Cra03] have been used. The test has been performed as

a one to one comparison that is two items have been played in row at the same an-

gle and after a short pause played at the next angle. In total, it has been four item

pairs in four angular ranges for five participants. The listener was asked to stay in

the center of the loudspeaker array sitting on a chair with view towards the center

loudspeaker of the ITU layout. After playing an item pair for one angular range, the

listener should describe the items in comparison to each other regarding smooth move-

ment when changing the angle, a stuck image towards a loudspeaker, signal distortion,

wideness of the image or a perceived front/back confusion. The listeners who took

part have been working in the audio research area for some time. Unfortunately, the

number of participants was too small to achieve statistical significance, yet the results

are useful in indicating how the used panning functions perform. The results shall

just give an idea how the methods behave properly regarding the reproduction and

give reason for a more sophisticated listening test. Since the most advanced method

presented in this thesis is the frequency dependent weighting, it is interesting to know

1http://www.mackie.com/products/hr824/specs.html

http://www.mackie.com/products/hr824/specs.html
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how it affects the spatial perception. For that reason it is included as the main item of

the listening test. It consists of a cosine penalized weighting for frequencies up to 1000

Hz and a pure pairwise amplitude panning for the upper frequencies. Additionally,

both weighting methods have been included as items separately to compare it with

the combined solution. To classify the elaborated techniques with already published

weightings for the ITU layout, the panning functions of Peter Craven [Cra03] complete

the list:

1. Frequency dependent weighting function with angular penalty like the example

described in Sect. 3.3: PenF.

2. Peter Cravens panning functions for the ITU layout [Cra03]: Craven.

3. The weighting functions created by the pairwise penalty as described in Sect. 3.2:

PW.

4. The weighting functions created by the angular penalty as described in Sect. 3.2

or in [Pol07]: Pen.

The abbreviations shall simplify further identification of the items. As a first com-

parison, the panning functions of Peter Craven have been played after the frequency

dependent weightings. The next item pair consists of pairwise panning and frequency

dependent weighting. Afterwards, the weightings of Peter Craven [Cra03] have been

opposed with those of Mark Poletti [Pol07]. In a last test, the latter weightings have

been compared with the frequency dependent method. The arrangement of the item

pairs is depicted in Table 5.1.

As expected, the listener did not know which kind of technique was used for sound

creation. Every participant received a questionnaire with one sheet per angular range

and four lines available per item pair to which he was allowed to listen up to two times.

The questionnaire is included in the Sect. A.3.
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Item Sample 1 Sample 2

A PenF Craven

B PW PenF

C Craven Pen

D Pen PenF

Table 5.1: Assignment of the different weighting methods to the listening items.

5.3 Results

Angular range from −45◦ to 45◦

Evaluation of the Records of the Questionnaire

The records of the listening test are attached in Sect. A.4. This section discusses

the results and tries to find tendencies or characteristics. For the first sample pair in

the angular range from −45◦ to 45◦ there is a clear tendency towards the frequency-

dependent panning function (PenF) regarding start and end position compared to

the Craven sample. The panning seems to be more smoothly for PenF. One listener

mentioned that the PenF sample could be more high frequent. For the second item

B in the same angular range there is no clear tendency and both samples, PW and

PenF, seem to perform similarly. Again, one participant notices coloration of the PenF

sample and another one differences in amplitude. For the pair Craven versus PenF,

the latter sample seems to start and end further out that is nearer to the start/end

point ±45◦. The PenF is respectively stuck to the outer speakers. Again, a difference

in timbre is noticed even if both weighting methods are not frequency dependent. The

last sample pair for the angular range −45◦ to 45◦, Pen and PenF, appear to pan

similarly and well from start to end point. PenF seems to be a little bit further out at

large angles. Some difference in timbre is noticed and for both, high frequency roll-off

between the physical speakers.
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Discussion of the Results

Summarizing, one can say that the frequency-dependent method PenF performs at

least equally well or slightly better for all of the item pairs. A difference in timbre

was noticed several times even for the methods with constant frequency response. For

that reason, one cannot deduce clear statements. One explanation for the difference

in timbre can be the room reflections. Another explanation could be the bias of the

listener from previously played samples, which possess partly similar panning methods

and additionally frequency dependency.

Angular range from 110◦ to 250◦

Evaluation of the Records of the Questionnaire

The area behind the listener starts again with the samples PenF versus Craven. There

is no clear tendency towards one of the samples, both stick to the outer loudspeakers

for a while and pan well directly behind the listener. One listener perceives a partly

frontal image for the Craven sample. The image near the loudspeaker seems to be

wider than directly behind the seat. For the second pair PW versus PenF, the records

result in no clear tendency towards one method. One person mentions coloration for

the PenF, another one frontal confusion for the pairwise panning method and other

persons notice frontal confusion without specification of the sample. In general, the

panning seems to be more smoothly than for the first item A and the images perform

similar with slight angle differences. Similar to the previous items, the third sample

pair sticks again to the loudspeakers for some time. The same person which noticed

coloration for the pairs before, mentions it in this case for the non frequency-dependent

methods. The notes reach from ’Both poor’ to ’Smooth movement from start to finish

for both samples’, i.e., no clear tendency is obvious. Again, the last sample pair is stuck

to loudspeakers for some time and then panned smoothly in between them. They seem

to be hard to distinguish. Pen confuses frontal, while PenF is leading/better without

a more profound description of the participants.
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Discussion of the Results

In general one can say that the distance of the loudspeakers does not allow a perfect

sound field synthesis. For that reason the images of the synthesized source are stuck to

the speakers for some time. In the area in between, the panning results are satisfying

for all samples without a clear favorite. Another feature which can be deduced is that

the image seems to be wider near the loudspeaker. Besides the artifacts in sound field,

the bad localization of the human hearing at angles left and right of a person [Bla97]

could be a reason for that. Furthermore, especially one participant noticed frontal

confusion several times, but never for the frequency-dependent method. Several others

noticed also frontal confusion, but never named a specific sample. Furthermore, the

sample pairs produce a bias in the perception if similar methods have been used, i.e.,

PenF consists of pairwise panning for high frequencies and the cosine penalty weighting

for low frequencies, and so biases the perception if one of this methods is its sample

partner.

Angular range from 30◦ to 110◦

Evaluation of the Records of the Questionnaire

The order of the items is the same for the source angles left of the listener. If one

considers the records of the first two samples, it is obvious that PenF creates a much

smoother panning between the two loudspeakers especially for the first degree steps. A

perceived coloration is not mentioned, but both stick to the speakers again. The next

samples PW and PenF show both a similar panning behavior between the speakers,

whereby they are stuck again at the loudspeakers. Two of the five participants preferred

the PenF method regarding smooth movement. For this case, colorations and timbre

differences have been mentioned by several persons. At the next sample comparison,

Craven’s weighting seems to start between the front left and the center speaker and is

stuck for a while at 30◦. In the end, both samples panned together. One listener again

noticed coloration for this non coloration weighting methods. In the last comparison,
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PenF has some slight benefits regarding smooth panning between the loudspeakers.

Four persons named coloration or timbre differences for the PenF sample.

Discussion of the Results

Considering the evaluation, there is a slight tendency towards the frequency-dependent

method, however some coloration has been mentioned, but this was also the case for

the non frequency-dependent sample pair. The coloration can be also caused by sound

reflections in the room. Again, this range is worse than frontal area where three

speakers with low angular distance are available for the reproduction.

Angular range from 250◦ to 330◦

Evaluation of the Records of the Questionnaire

The last angular range is symmetric to the one discussed before. It is difficult to recog-

nize a tendency out of the records for the first sample comparison of PenF and Craven.

Three persons assume that PenF departs quicker from the left surround speaker and

Craven lags behind. Furthermore, a timbre difference for PenF is noticed of two par-

ticipants, and another one perceives a reduced volume for PenF. If one considers the

next comparison, the movement seems to be the same for both samples. Again, PenF

depicts distortion features what has been mentioned by three listeners. Cravens sam-

ple states a smoother movement compared to Pen departing from 250◦. Pen creates a

timbre change near the end of the angular range which was mentioned by two persons.

For comparison of Pen and PenF, it is conspicuous that there is no timbre difference

mentioned. The movement of Pen seems to be quicker and more smoothly in this case.

Discussion of the Results

The last angular range creates a clear bias towards the first sample in each item.

Several listeners described the first sample as the leading one. Another interesting

thing is that for the first three items even for the one without frequency dependency,
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a distortion was mentioned by several participants. One possible explanation for this

is that especially on the right side of the listener, the reflections of the room have been

particularly pronounced.

Conclusions from the Listening Test

The performed listening test is surely not a perfect proof for the performance of the

included techniques. But it gives definitely an idea if more sophisticated investigations

should be conducted. For almost all of the angular ranges, the PenF achieves positive

results regarding smooth movement. Only in the last range, a bias towards the first

sample in each item is shown. Furthermore, several times coloration has been men-

tioned. As the coloration was also mentioned for the frequency-independent sample

pair, it is not possible to deduce a tendency towards one of the samples. The reflections

of the room have certainly a big influence on this perception, too. Another outcome is

the bias of the samples to each other: Besides the influence within an item, samples of

previous items can influence the perception on the one currently played.
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Chapter 6

Conclusions and Future Work

Within the scope of this thesis, solutions for the loudspeaker weightings for arbitrary

reproduction setups have been derived based on the Ambisonics theory. The solutions

have been given by matching the desired sound field with the sound field produced by

the loudspeaker. A connection between pressure matching [Pol07] and mode match-

ing [Pol00] has been shown. By the use of this matching condition, a direct solution

for uniformly spaced positioned loudspeakers for the three and two dimensional case

has been specified. The solutions for nonuniform layouts like the ITU layout are then

deduced with a least squares approach as used in [Pol07] [Pol05] [BK10]. As this ap-

proach results in a non robust solution, the loudspeaker amplitudes are regulated with

an angular penalty. Several penalizing techniques have been introduced and analyzed

on the basis of the ITU layout loudspeaker driving functions. For the pairwise penalty,

a connection to traditional stereophony has been derived. By the use of interpolation

points which are defined by the limits of the Ambisonics theory regarding frequency

and radius, a frequency-dependent weighting method has been introduced. To analyze

the performance of the introduced techniques, an Ambisonics decoder with graphical

user interface has been implemented. The tool provides controlling and analyzing ele-

ments for the design of the decoder, the reproduction setup control, audio demo control

and test signal creation. With the help of this tool, a listening test has been performed

and evaluated. Despite all that, one has to say that the results of the listening test are
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too inconclusive to derive a firm statement. For that reason, further tests would be

required.

The mentioned reverberant sound field leads to the conclusion that it would be neces-

sary to perform a test in an Anechoic environment. Furthermore, a more sophisticated

construction of the reproduction setup with additional loudspeaker for source position-

ing would lead to statistical significant results, like it has been done in [PH05]. Even

though the test group of the listening test was rather small, the results give ideas if

further investigations shall be done.

Based on the results presented in this thesis, further research could deal with the op-

timal solution for the frequency dependent weighting. One possibility would be to

compare the head related transfer functions (HRTF) of the desired wave at a dummy

head with one produced by the frequency-dependent method. The weightings could be

optimized based on that. Furthermore, HRTF represent a useful evaluation method

for the performance of a technique.
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Appendix A

Appendix

A.1 Spherical Harmonics

This section shall give a brief overview how the spherical harmonics are defined.The

m-th spherical harmonic of order n is defined as

Y m
n (θ, φ) = Λm

n P
|m|
n (cos(θ))e−imφ. (A.1)

The dependency of elevation angle θ is given by the |m|th Legendre function of order

n, which is defined as

Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm
(Pn(x)) =

(−1)m

2nn!
(1− x2)m/2

dn+m

dxn+m
(x2 − 1)n, (A.2)

where x = cos(θ) is used in the spherical harmonics definition. The weighting factor

Λm
n is defined as

Λm
n =

√(
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

)
. (A.3)

In Table A.1, all spherical harmonics up to order N = 3 are shown. The angular depen-

dencies are respectively given by the sine and cosine terms coming from the Legendre

functions for the elevation angle θ and by the exponential term for the azimuthal angle
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φ. It is obvious that following correspondence holds

Y m
n (θ, φ)∗ = Y −mn (θ, φ), (A.4)

what creates a symmetry in the table.

m\n 0 1 2 3

−3
√

35
64π

sin3 θe−3iφ

−2
√

15
32π

sin2 θe−2iφ
√

105
32π

sin2 θ cos θe−2iφ

−1
√

3
8π

sin θe−iφ
√

15
8π

sin θ cos θe−iφ
√

21
64π

sin θ (5 cos2 θ − 1) e−iφ

0
√

1
4π

√
3

4π
cos θ

√
5

16π
(3 cos2 θ − 1)

√
7

16π
(5 cos3 θ − 3 cos θ)

1 −
√

3
8π

sin θ eiφ −
√

15
8π

sin θ cos θ eiφ −
√

21
64π

sin θ (5 cos2 θ − 1) eiφ

2
√

15
32π

sin2 θ e2iφ
√

105
32π

sin2 θ cos θ e2iφ

3 −
√

35
64π

sin3 θ e3iφ

Table A.1: Spherical Harmonics up to order N = 3.

Fig. A.1 depicts the normalized real part of the spherical harmonics up to order N = 3.

As the shape of the harmonics shows symmetrical correspondence, it has been plotted

only for positive values of m.
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Figure A.1: Real part of the spherical harmonics up to order N = 3.

A.2 2D- and 3D- Greens Function

The Green’s function represents a solution for the wave equation and describes the

behavior of a radiating source. For a line source the solution is given by [Wil99]

G2D(‖r− r0‖) =
i

4
H

(1)
0 (k ‖r− r0‖), (A.5)

whereby H
(1)
0 represents the Bessel function of the third kind of first order also called

Hankel function. The Hankel function consists of the Bessel function of the first kind

Jν(x) and second kind Yν(x) also known as Weber or Neumann functions [Wil99]. The

connection is given by



74

H(1)
ν (x) = Jν(x) + i · Yν(x), H(2)

ν (x) = Jν(x)− i · Yν(x). (A.6)

For an infinite length there is no dependency of z for a line source. A discussion about

line and point sources in a more practical way is done in section 2.3. For a point source,

the solution of the wave equation is given by the three dimensional Green’s function

G3D(‖r− r0‖) =
eik‖r−rl‖)

4π ‖r− r0‖
=

i

4π
h

(1)
0 (k ‖r− r0‖). (A.7)

For the spherical Hankel function h
(1)
0 , the coherence of A.6 holds, too.
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Figure A.2: Comparison of the real part of the Green’s function for a spherical and a
cylindrical wave.

In figure A.2 the real part of the two and three dimensional Green’s function is depicted.

It seems that for values of radius r near to zero, the point source possesses a higher

amplitude. For the spherical wave, the imaginary part simplifies to
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<{G3D} = <
{

eik‖r−rl‖)

4π ‖r− r0‖

}
= <

{
i

4π
h

(1)
0 (k ‖r− r0‖)

}
= −y0(r) =

cos(r)

r
. (A.8)
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Figure A.3: Comparison of the imaginary part of the Green’s function for a spherical
and a cylindrical wave.

Figure A.3 shows the plot of the imaginary of a spherical wave. In this case, the line

source begins with an higher value and attenuates more slowly. The imaginary part of

quation A.7 results in the spherical Bessel function

={G3D} = =
{

eik‖r−rl‖)

4π ‖r− r0‖

}
= =

{
i

4π
h

(1)
0 (k ‖r− r0‖)

}
= j0(r) =

sin(r)

r
, (A.9)

which is the cardinal sine.

As one can see from the real part of the Green’s function, the point source attains

counter-intuitively higher values for small radii. Even if this does not hold for the
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imaginary part, it would be interesting to know how the magnitude of the two Green’s

functions behaves. Fig. A.4 shows the plot for both versions. The magnitude of the

two dimensional Green’s function is proportional 1/r as one can see from Eq. A.7. It

obvious that both curves intersect for r ≈ 0.1. The previous plot does not show exactly
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Figure A.4: Comparison of the magnitude of the Green’s function for a spherical and
a cylindrical wave.

which attenuation the two dimensional Green’s function possesses. A logarithmic plot

is more meaningful in that case. Fig. A.5 depicts the magnitude in Decibel of the

functions in logarithmic scaling. Considering the slope of the curve the attenuation for

the spherical wave is 20dB per decade what is not surprising because the proportionality

to 1/r. The slope for the magnitude of the two dimensional Green’s function attains

-10dB per decade what leads to a magnitude proportional to 1/
√
r. Summarizing one

can say, that an infinite long line source has the half attenuation of a point source.
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A.3 Questionnaire Listening Test

Source Movement for φs = −45◦...45◦ in 5◦ steps

Item A1 (First Sound) vs A2 (Second Sound): Notes

Item B1 (First Sound) vs B2 (Second Sound): Notes

Item C1 (First Sound) vs C2 (Second Sound): Notes

Item D1 (First Sound) vs D2 (Second Sound): Notes
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Source Movement for φs = 110◦...250◦ in 5◦ steps

Item A1 (First Sound) vs A2 (Second Sound): Notes

Item B1 (First Sound) vs B2 (Second Sound): Notes

Item C1 (First Sound) vs C2 (Second Sound): Notes

Item D1 (First Sound) vs D2 (Second Sound): Notes
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Source Movement for φs = 30◦...110◦ in 5◦ steps

Item A1 (First Sound) vs A2 (Second Sound): Notes

Item B1 (First Sound) vs B2 (Second Sound): Notes

Item C1 (First Sound) vs C2 (Second Sound): Notes

Item D1 (First Sound) vs D2 (Second Sound): Notes
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Source Movement for φs = 250◦...330◦ in 5◦ steps

Item A1 (First Sound) vs A2 (Second Sound): Notes

Item B1 (First Sound) vs B2 (Second Sound): Notes

Item C1 (First Sound) vs C2 (Second Sound): Notes

Item D1 (First Sound) vs D2 (Second Sound): Notes
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A.4 Notes Records of Questionnaire

Item A1 vs Item A2 with φs = −45◦...45◦

Listener 1

A1 moved slower from −45◦ to 0◦ and A2 seemed to pan more evenly. A1 made a fast

jump to the centre speaker. But then A1 seemed to create a more convincing (clearer)

image from 0◦ to 45◦ whilst A2 lagged behind.

Listener 2

A2 seems to be stuck on the speakers.

A pans quite well

Listener 3

A1 - Initially A2 was following A1 later it got reversed. There was a jump at the

beginning.

Listener 4

A1 much further out than A2; A1 better; slight diff in timbre - maybe A1 slightly more

high freq?

Listener 5

A2 sounded more central when position was in between physical speakers, but positions

were equivalent at speakers. No difference in colouration;
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Item B1 vs Item B2 with φs = −45◦...45◦

Listener 1

B1 & B2 seemed to perform similarly. They both ’stuck’ to the front-right loudspeaker

for a little long. Perhaps B1 sounded a little more convincing, but I would have to

listen to the pair of sounds in the opposite order to be sure. Images were both clear;

Listener 2

Both pan well, B2 seems to be slightly distorted at large angle (≈ 40+◦)

Listener 3

Both went together. But amplitude was higher few time on 1st.

Listener 4

B1 slightly further out at 45◦ than B2.

Listener 5

Both sources appeared to come from the same locations. No difference in colouration.

Item C1 vs Item C2 with φs = −45◦...45◦

Listener 1

C1 moved faster than C2 which appeared to be stuck to the FR loudspeaker initially.

So C1 led C2 upto the front-left (FL) loudspeaker, but then C2 overtook C1, eventually

localizing at 45◦ whilst C1 ended at around 30◦. Images were fairly clear.

Listener 2

C2 seems to be slightly further behind (larger angle)
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Listener 3

Both seem to come from different angle. This is more so in the beginning and at the

end. The first sound was advanced.

Listener 4

C2 further out eg at 45◦ than C1. Difference in timbre.

Listener 5

C2 sounded distorted - missing low frequencies. C2 appeared to cling to physical

speakers while C1 moved smoothly between.

Item D1 vs Item D2 with φs = −45◦...45◦

Listener 1

Again D2 lagged D1. D1 was perhaps more clear. I would like to hear the sound in

opposite order (D2 first) to confirm.

Listener 2

Both pan well, D2 slightly better at large angles

Listener 3

Both have constant movement and together.

Listener 4

No significant difference in source angle. Slight timbre difference.
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Listener 5

Both sources appeared to move smothly between loudspeakers. Also, both sources

seemd to have high-frequency roll-off between physical speakers.

Item A1 vs Item A2 with φs = 110◦...250◦

Listener 1

A2 led A1 perhaps slightly, fairly clear image, sticking to back-left speaker a little at

first but not too much. Quite similar in performance. Stuck also a bit at back-right

speaker.

Listener 2

Both pan well behind the seat, sound is stuck near the 110◦/250◦ points.

Listener 3

Both were together. But both stayed longer time in the side speakers.

Listener 4

A1 is to the rear. A2 is confusing and partly frontal. A1 is good

Listener 5

No difference in colouration between A1/A2. Both sources appeared to spreadout

before moving behind me and then again before settling at destination.

Item B1 vs Item B2 with φs = 110◦...250◦

Listener 1

Quite wide images, B2 leading, especially behind me. Colouration of signals? Esp. the

second one? Images perhaps harder to distinguish than in prior cases.
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Listener 2

Both do well at different angles. B2 sounds like it is at a slightly different angle to B1.

Listener 3

Bothe travelling same way. Stayed little long on the right speaker. Both appeared to

come from front at the half point.

Listener 4

B2 is to the rear. B1 is confusing / frontal

Listener 5

No difference in colouration. Some apparent front/back confusion when slightly of

physical speaker, but much less apparent than test A above.

Item C1 vs Item C2 with φs = 110◦...250◦

Listener 1

Wider images again, jumping quite quickly from back-left speaker to behind, but seem-

ingly fairly smoothly from behind to back-rigth. C2 leading C1 as the source was

panned. Slight colouration as in item B.

Listener 2

C2 sticks to the rear speakers.

Listener 3

Both stayed together, but later part it appeared from the front speaker.
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Listener 4

Both poor: C1 slightly move to the rear.

Listener 5

No difference in colouration. Smooth movement from start to finish for both samples.

Item D1 vs Item D2 with φs = 110◦...250◦

Listener 1

Both stuck on the loudspeaker back left. Then image quickly widening to move behind.

Hard to distinguish the two different signals, but perhaps the second sound was leading

again.

Listener 2

Both sound identical, both are good at resolving angle

Listener 3

Both stayed together, but long time on the right speaker

Listener 4

D2 better. D1 is confusing frontal.

Listener 5

No difference in colouration. No difference in position. Samples seemed to cling to

speakers, but move smoothly between them
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Item A1 vs Item A2 with φs = 30◦...110◦

Listener 1

A1 leading A2 with better image quality and less likely to be stuck to loudspeaker.

Listener 2

A2 sticks to the front left speaker and is slightly different sounding to A1

Listener 3

1st in advanced initially but later together.

Listener 4

A1 starts further round 30◦. Both end up similar at 110◦

Listener 5

No difference in colouration. A1 appeared to move between physical speakers more

smoothly than A2. A2 seemed to cling to speakers.

Item B1 vs Item B2 with φs = 30◦...110◦

Listener 1

B2 leading B1 at first. B2 panning more smoothly whilst B1 jumped. B2 seemed to

be ’coloured’ differently, which made me feel, this image was wider.

Listener 2

Both pan well, some attenuation while the source moves between the front and rear

speakers.
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Listener 3

B1 stayed on the same speaker for longer time, later caught up.

Listener 4

Similar. Both slow to move. Stuck at 30◦ for a few cases. Slight timbred differences.

Source angles similar.

Listener 5

Near 30◦, B1 appeared to have some high-frequency roll-off. Both samples appeared

to move smoothly between speakers.

Item C1 vs Item C2 with φs = 30◦...110◦

Listener 1

C1 leading C2. C1 seemed to start between the front-left and the centre loudspeakers

but quickly moved to the FL loudspeaker. C2 started at FL loudspeaker.

Listener 2

C1 sticks to the front speaker at the beginning of the test, otherwise both are good at

panning.

Listener 3

Both stayed long on the speakers. Both moved equally.

Listener 4

C2 further round than C1. C1 stuck at 30◦ . End up save at 110◦
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Listener 5

C2 appeared to have a slight bias toward 90◦. There was a subtle difference in coloura-

tion, but difficult to describe.

Item D1 vs Item D2 with φs = 30◦...110◦

Listener 1

Similar performance. Both were fairly ’sticky’ front-left loudspeaker, but still panned

quite gradually through from 30◦ to 110◦. D2 started to move from front-left first,

with D1 following initially. Perhaps D1 moved faster though angle once unsticking

from front-left loudspeaker

Listener 2

D2 pans better, but is slightly distorted (low-pass filter?)

Listener 3

Both jumped from speaker to another

Listener 4

Very similar source angles. D1 higher freq sp. for angles ≈ 45◦

Listener 5

D2 had high-frequency roll of when in between physical speakers. Both samples moved

smoothly over range.
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Item A1 vs Item A2 with φs = 250◦...330◦

Listener 1

A2 followed A1 through to 330◦, but A2 moved through front right loudspeaker to the

centre one. It took a little while fpr the images to move from back right.

Listener 2

A1 is quieter than A2 as the source approaches 330◦

Listener 3

A2 was behind A1, moving in jumpily.

Listener 4

A1 moves away from right surround quicker. A1 loses low frequencies as we approach

330◦. Clear timbred diff- A1 timbre varied, A2 timbre constant.

Listener 5

A1 had high-frequency roll-off. Both samples appeared quieter around 330◦. Both

samples moved together, but appeared static around 250◦ and then jumped to around

300◦.

Item B1 vs Item B2 with φs = 250◦...330◦

Listener 1

B1 & B2 spent more time stuck than in item A. Quite a fast jump from back-right to

front-right, with B1 leading B2. The image jumped the most rapidly through lateral

angle 270◦.
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Listener 2

B2 sticks to the rear speaker angle, sounds distorted compared with B1.

Listener 3

Both stayed together, but longer in the later speaker.

Listener 4

Both stuck at 250◦ for a while. Rapid shift through 270◦. B2 timbre changed with

angle.

Listener 5

Both samples moved together, but again, movement was hard to detect at first. Coloura-

tion was normal until around 300◦, then B2 suffered some low-frequency roll-off.

Item C1 vs Item C2 with φs = 250◦...330◦

Listener 1

C1 panned more smoothly from back-right to front-right. C2 jumped quite fast to

front-right.

Listener 2

Both pan well, as the source approaches 330◦, but don’t do well otherwise.

Listener 3

Both looking good, constant movement and together.
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Listener 4

Same speaker detent at 250◦ as B1 B2. C2 timbre changed as -¿ 330◦ -¿ high-pass. C1

slightly better at getting away from 250◦

Listener 5

C2 sounded band-passed near the end of the range. Both samples moved together,

smoothly through the range.

Item D1 vs Item D2 with φs = 250◦...330◦

Listener 1

D1 & D2 stuck to back right, with D1 leading D2. D1 creating a clearer image and

panned more smoothly.

Listener 2

Both pan ok, D2 seems to be slightly offset (follows D1).

Listener 3

Constant movement and together.

Listener 4

D1 moves forward quicker (slightly) than D2, similar timbre.

Listener 5

Not colouration noticed. Movement started smooth but D1 progressed faster than D2

near 300◦ to completion.
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Appendix B

Abbreviations

ANSI American National Standards Institute

DTFT discrete-time Fourier transform

GUI graphical user interface

LS left surround

HOA higher order Ambisonics

HRTF head related transfer functions

IFFT inverse fast fourier transformation

IR impulse response

ITU International Telecommunication Union

PA public address

pchip piecewise cubic Hermite interpolating polynomial

rms root mean squared

RS Right Surround

VBAP vector based amplitude panning

WFS wave field synthesis

XML extensible markup language
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Appendix C

Notation

Mathematical Operators

∂
∂w

derivative with respect to w

(·)∗ complex conjugation

(·)H complex conjugate transposition

‖·‖ L2 norm

={·} imaginary part operator

<{·} real part operator

(·)T transposition

Symbols

a piston radius

a0 filter coefficient

aLM Mth filter coefficient of the Lth loudspeaker

α angular distance between loudspeakers

Aa acoustic absorption

Amn Ambisonics coefficient
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Als
cy weighting matrix for matching a point source in cylindrical coordinates

Apw
cy weighting matrix for matching a plane wave in cylindrical coordinates

Aps
sp weighting matrix for matching a point source in spherical coordinates

Apw
sp weighting matrix for matching a plane wave in spherical coordinates

B phase term matrix

c speed of sound

D directivity factor

dc chord distance

f frequency

fs sampling frequency

g[k] filter impulse response

G(eiΩ) frequency response

G2D() two dimensional Green’s function

G3D() three dimensional Green’s function

γr regularistion factor

Γ regularistion matrix

hn() spherical Hankel function of the first kind of n-th order

Hm() Hankel function of the first kind of m-th order

H propagation matrix including the matching conditions

Hls
cy propagation matrix including the matching conditions for a point source in cylindrical coordinates

Hpw
cy propagation matrix including the matching conditions for a plane wave in cylindrical coordinates

Hps
sp propagation matrix including the matching conditions for a point source in spherical coordinates

Hpw
sp propagation matrix including the matching conditions for a plane wave in spherical coordinates

i imaginary unit
√
−1

Id direct sound intensity

Ir reverberant sound intensity

jn() spherical Bessel function of the first kind of n-th order

Jn() Bessel function of the first kind of n-th order

k wave number
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k wave vector

K number of frequency points

ω angular frequency

Ω normalized angular frequency

Ωµ µ-th normalized angular frequency

p sound pressure

p mode or pressure matching vector

Pa acoustic power

P
|m|
n |m|-th associated Legendre function of order n

φ azimuthal angle

φl azimuthal angular position of the loudspeaker

φs azimuthal angular position of the sound source

φp azimuthal angular position of point p

Q trigonometric coefficient matrix

r distance to the origin in spherical coordinates (or radius)

R distance to the origin in cylindrical coordinates

r position vector

r0 position vector of a source

rp position vector of point p

T60 reverberation time

T trigonometric function matrix

θ elevation angle

θl elevation angular position of the loudspeaker

θs elevation angular position of the sound source

θp elevation angular position of point p

V volume

wl weighting of the l-th loudspeaker

w weighting vector with elements wl

W weighting vector with elements wl
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Y m
n m-th spherical harmonic of n-th order
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contexte multimédia, Université Paris 6, Diss., 2001

http://www.aes.org/e-lib/browse.cfm?elib=2012
http://sites.google.com/site/mytemporarydownloads/Gerzon_JAES_1985.pdf
http://sites.google.com/site/mytemporarydownloads/Gerzon_JAES_1985.pdf
http://dx.doi.org/10.1137/1031049
http://books.google.co.nz/books?id=8abnhvLAyNAC


BIBLIOGRAPHY 107

[KFCS99] Kinsler, Lawrence E. ; Frey, Austin R. ; Coppens, Alan B. ;

Sanders, James V.: Fundamentals of acoustics. Bd. 1. 1999. – 560 S. –

ISBN 0–471–84789–5

[KMNF89] Kahaner, D. ; Moler, C.B. ; Nash, S. ; Forsythe, G.E.: Numerical

methods and software. Prentice Hall, 1989 (Prentice-Hall series in

computational mathematics).

http://books.google.co.nz/books?id=jipEAQAAIAAJ

[KSAJ07] Kennedy, Rodney a. ; Sadeghi, Parastoo ; Abhayapala, Thushara D.

; Jones, Haley M.: Intrinsic Limits of Dimensionality and Richness in

Random Multipath Fields. In: IEEE Transactions on Signal Processing

55 (2007), Juni, Nr. 6, 2542–2556.

http://dx.doi.org/10.1109/TSP.2007.893738. – DOI

10.1109/TSP.2007.893738. – ISSN 1053–587X

[Kuh77] Kuhn, George F.: Model for the interaural time differences in the

azimuthal plane. In: The Journal of the Acoustical Society of America

(1977)

[LCYG99] Litovsky, Ruth Y. ; Colburn, H. S. ; Yost, William A. ; Guzman,

Sandra J.: The precedence effect. In: The Journal of the Acoustical

Society of America 106 (1999), Nr. 4, 1633.

http://dx.doi.org/10.1121/1.427914. – DOI 10.1121/1.427914. –

ISSN 00014966

[LS03] Lee, Seung-Rae Lee Seung-Rae ; Sung, Koeng-Mo Sung Koeng-Mo:

Generalized encoding and decoding functions for a cylindrical ambisonic

sound system. In: IEEE Signal Processing Letters 10 (2003).

http://dx.doi.org/10.1109/LSP.2002.806703. – DOI

10.1109/LSP.2002.806703. – ISSN 1070–9908

http://books.google.co.nz/books?id=jipEAQAAIAAJ
http://dx.doi.org/10.1109/TSP.2007.893738
http://dx.doi.org/10.1121/1.427914
http://dx.doi.org/10.1109/LSP.2002.806703


108

[ME04] Margolis, E. ; Eldar, Y.C.: Reconstruction of nonuniformly sampled

periodic signals: algorithms and stability analysis. In: Electronics,

Circuits and Systems, 2004. ICECS 2004. Proceedings of the 2004 11th

IEEE International Conference on, 2004, S. 555–558

[Mol13] Moler, Cleve (.: Numerical Computing with MATLAB. Siam, 2013. –

Chapter 3 S. http://www.mathworks.com/moler/interp.pdf

[Moo09] Moore, John D.: The Development of a Design Tool for 5-Speaker

Surround Sound Decoders, Diss., 2009. – 287 S.

[OSB99] Oppenheim, Alan V. ; Schafer, Ronald W. ; Buck, John R.: Discrete

Time Signal Processing. Bd. 1999. 1999. – 870 S. – ISBN 0137549202

[PBA12] Poletti, M.A. ; Betlehem, T. ; Abhayapala, T.D.: Analysis of 2D

sound reproduction with fixed-directivity loudspeakers. In: ICASSP,

IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, 2012. – ISBN 9781467300469, 377-380

[PFN10] Poletti, M ; Fazi, F M. ; Nelson, P A.: Sound-field reproduction

systems using fixed-directivity loudspeakers. In: The Journal of the

Acoustical Society of America 127 (2010), S. 3590–3601.

http://dx.doi.org/10.1121/1.3409486. – DOI 10.1121/1.3409486. –

ISSN 00014966

[PH05] Pulkki, V. ; Hirvonen, T.: Localization of virtual sources in

multichannel audio reproduction. In: IEEE Transactions on Speech and

Audio Processing 13 (2005), Nr. 1.

http://dx.doi.org/10.1109/TSA.2004.838533. – DOI

10.1109/TSA.2004.838533. – ISBN 1063–6676

http://www.mathworks.com/moler/interp.pdf
http://dx.doi.org/10.1121/1.3409486
http://dx.doi.org/10.1109/TSA.2004.838533


BIBLIOGRAPHY 109

[Pol96] Poletti, M.: The design of encoding functions for stereophonic and

polyphonic sound systems. In: Journal of the Audio Engineering Society

44 (1996), Nr. 11, S. 948–963. – ISSN 1549–4950

[Pol00] Poletti, Mark A.: A Unified Theory of Horizontal Holographic Sound

Systems. In: Journal of the Audio Engineering Society 48 (2000),

1155—-1182. http://www.aes.org/e-lib/browse.cfm?elib=12033

[Pol05] Poletti, MA: Three-Dimensional Surround Sound Systems Based on

Spherical Harmonics*. In: Journal of the Audio Engineering Society 53

(2005), S. 1004–1025. ISBN 1549–4950

[Pol07] Poletti, Mark A.: Robust Two-Dimensional Surround Sound

Reproduction for Nonuniform Loudspeaker Layouts. In: Journal of the

Audio Engineering Society 55 (2007), S. 598–610

[PT55] Penrose, R. ; Todd, J. A.: A generalized inverse for matrices. In:

Mathematical Proceedings of the Cambridge Philosophical Society 51

(1955), Nr. July, S. 406.

http://dx.doi.org/10.1017/S0305004100030401. – DOI

10.1017/S0305004100030401. – ISBN 0305004100030

[Pul97] Pulkki, Ville: Virtual sound source positioning using vector base

amplitude panning. In: Journal of the Audio Engineering Society 45

(1997), 456–466. http://www.aes.org/e-lib/browse.cfm?elib=7853. –

ISSN 15494950

[RS09] Rabenstein, Rudolf ; Spors, Sascha: Sound Field Reproduction.

Version: 2009. http://dx.doi.org/10.1121/1.3203918. In: Benesty,

Jacob (Hrsg.) ; Sondhi, Mohan M. (Hrsg.) ; Huang, Yiteng (Hrsg.):

Springer Handbook of Speech Processing Bd. 126. Springer, 2009. – DOI

10.1121/1.3203918. – ISBN 9783540491255, Kapitel 53, 1095–1114

http://www.aes.org/e-lib/browse.cfm?elib=12033
http://dx.doi.org/10.1017/S0305004100030401
http://www.aes.org/e-lib/browse.cfm?elib=7853
http://dx.doi.org/10.1121/1.3203918


110

[Sno55] Snow, William B.: Basic Principles of Stereophonic Sound. In: IRE

Transactions on Audio 3 (1955), S. 42–53.

http://dx.doi.org/10.1109/TAU.1955.1165407. – DOI

10.1109/TAU.1955.1165407. – ISBN 0096–1981 VO – AU–3

[SRA08] Spors, Sascha ; Rabenstein, Rudolf ; Ahrens, Jens: The Theory of

Wave Field Synthesis Revisited. In: 124th AES Convention, 2008,

Convention Paper 7358

[SS06] Støfringsdal, B̊ard ; Svensson, Peter: Conversion of Discretely

Sampled Sound Field Data to Auralization Formats. In: J. Audio Eng.

Soc 54 (2006), Nr. 5, 380–400.

http://www.aes.org/e-lib/browse.cfm?elib=13682

[TB86] Toothman, Johnson ; Brenig: ANSI SI.II-1986: Specification for

Octave-Band and Fractional-Octave-Band Analog and Digital Filters.

1986

[WA01] Ward, Darren B. ; Abhayapala, Thushara D.: Reproduction of a

Plane-Wave Sound Field Using an Array of Loudspeakers. 9 (2001), Nr.

6, S. 697–707

[WAM09] Wu, Yan J. ; Abhayapala, Thushara D. ; Member, Senior: Theory

and Design of Soundfield Reproduction Using Continuous Loudspeaker

Concept. 17 (2009), Nr. 1, S. 107–116

[Wil99] Williams, Earl G.: Fourier Acoustics: Sound Radiation and Nearfield

Acoustical Holography. Academic Press, 1999. – ISBN 0127539603

http://dx.doi.org/10.1109/TAU.1955.1165407
http://www.aes.org/e-lib/browse.cfm?elib=13682

	Kurzfassung
	Abstract
	Introduction
	Higher Order Ambisonics
	Matching in Spherical Coordinates
	Spherical Sound Field Description
	Plane Wave Matching in Spherical Coordinates
	The Right Choice of the Modes to Match and Bounds for the Sound Field
	Matrix Formulation of the Azimuthal Mode Matching Equation
	Matching for Point Source Loudspeaker
	Direct Solution for Loudspeaker Weightings

	Matching in Cylindrical Coordinates
	Cylindrical Sound Field Description
	Plane Wave Matching in Cylindrical Coordinates
	Matching for Line Source Loudspeaker
	Direct Solution for Loudspeaker Weightings

	Connection between Line and Point Sources
	Solutions for the Loudspeaker Weightings
	Unregulated Solution
	Tikhonov Regularization
	Limit the Panning Function Order


	Weighting Function Design
	Weightings of the ITU Layout
	Penalty Function Design
	Design
	Penalty Function Analysis
	From Pairwise Penalty to the Stereo Panning Laws

	Frequency Dependent Design
	Robust Panning for given Reproduction Setups
	Interpolation between the required Weighting Factors
	Reducing the Impulse Response Coefficients


	Audio Control Interface
	Graphical User Interface
	Test Signal Creation

	Listening Test
	Room Description and Experimental Setup
	Implementation and Test Items
	Results

	Conclusions and Future Work
	Appendix
	Spherical Harmonics
	2D- and 3D- Greens Function
	Questionnaire Listening Test
	Notes Records of Questionnaire

	Abbreviations
	Abbreviations
	Notation
	Notation
	List of Figures
	List of Tables
	Bibliography

